首页> 外文OA文献 >Stress Intensity Factor for a Circumferential Crack in a Finite-Length Thin to Thick Walled Cylinder under an Arbitrary Biquadratic Stress Distribution on the Crack Surfaces
【2h】

Stress Intensity Factor for a Circumferential Crack in a Finite-Length Thin to Thick Walled Cylinder under an Arbitrary Biquadratic Stress Distribution on the Crack Surfaces

机译:裂纹表面任意双二次应力分布下有限长薄壁厚圆筒周向裂纹的应力强度因子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the development of a practical method, by using prepared tabulated data, tocalculate the mode I stress intensity factor (SIF) for an inner surface circumferential crack in a finitelength cylinder. The crack surfaces are subjected to an axisymmetric stress with an arbitrary biquadraticradial distribution. The method was derived by applying the authors’ weight function for the crack. Thiswork is based on the thin shell theory and the Petroski-Achenbach method. Our method is valid over awide range of mean radius to wall thickness ratio, Rm/W ≥ 1, and for relatively short cracks with a/W ≤0.5. The difference between the SIF obtained by our method for the geometry and that from finite elementanalysis is within 5%. The method we developed describes the effect that cylinder length gives on the SIF.This effect needs to be considered for cylinders shorter than non-dimensional cylinder length βH≤ 5.
机译:本文介绍了一种实用的方法,通过使用准备好的表格数据来计算有限长圆柱体内表面圆周裂纹的模式I应力强度因子(SIF)。裂纹表面受到具有任意双二次径向分布的轴对称应力。该方法是通过对裂缝应用作者的权重函数得出的。这项工作基于薄壳理论和Petroski-Achenbach方法。我们的方法在平均半径与壁厚之比Rm / W≥1的宽范围内有效,并且对于a / W≤0.5的相对短的裂纹也是有效的。通过我们的几何方法获得的SIF与通过有限元分析获得的SIF之差在5%之内。我们开发的方法描述了圆柱长度对SIF的影响,对于小于无量纲圆柱长度βH≤5的圆柱,需要考虑这种影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号