首页> 外文OA文献 >Hypernode Graphs for Learning from Binary Relations between Groups in Networks
【2h】

Hypernode Graphs for Learning from Binary Relations between Groups in Networks

机译:用于从网络中的组之间的二进制关系学习的超节点图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The aim of this paper is to propose methods for learning from interactions between groups in networks. We propose a proper extension of graphs, called hypernode graphs as a formal tool able to model group interactions. A hypernode graph is a collection of weighted relations between two disjoint groups of nodes. Weights quantify the individual participation of nodes to a given relation. We define Laplacians and kernels for hypernode graphs and prove that they strictly generalize over graph kernels and hypergraph kernels. We then proceed to prove that hypernode graphs correspond to signed graphs such that the matrix D − W is positive semi-definite. As a consequence, homophilic relations between groups may lead to non homophilic relations between individuals. We also define the notion of connected hypernode graphs and a resistance distance for connected hypernode graphs. Then, we propose spectral learning algorithms on hypernode graphs allowing to infer node ratings or node labelings. As a proof of concept, we model multiple players games with hypernode graphs and we define skill rating algorithms competitive with specialized algorithms.
机译:本文的目的是提出从网络中的群体之间的相互作用中学习的方法。我们提出了图的适当扩展,称为超节点图,它是一种能够对群组交互进行建模的正式工具。超节点图是两个不相交的节点组之间的加权关系的集合。权重量化节点对给定关系的个体参与。我们为超节点图定义了拉普拉斯算子和核,并证明它们严格地概括了图核和超图核。然后,我们继续证明超节点图与有符号图相对应,从而矩阵D-W是正半定的。结果,群体之间的同性恋关系可能导致个人之间的非同性恋关系。我们还定义了连接超节点图的概念和连接超节点图的电阻距离。然后,我们在超节点图上提出频谱学习算法,从而可以推断节点的等级或节点标签。作为概念证明,我们使用超节点图为多个玩家游戏建模,并定义与专业算法竞争的技能评估算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号