首页> 外文OA文献 >On the Performance Analysis of a Class of Transform-domain NLMS Algorithms with Gaussian Inputs and Mixture Gaussian Additive Noise Environment
【2h】

On the Performance Analysis of a Class of Transform-domain NLMS Algorithms with Gaussian Inputs and Mixture Gaussian Additive Noise Environment

机译:高斯输入和混合高斯加性噪声环境下一类变换域NLms算法的性能分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper studies the convergence performance of the transform domain normalized least mean square (TDNLMS) algorithm with general nonlinearity and the transform domain normalized least mean M-estimate (TDNLMM) algorithm in Gaussian inputs and additive Gaussian and impulsive noise environment. The TDNLMM algorithm, which is derived from robust M-estimation, has the advantage of improved performance over the conventional TDNLMS algorithm in combating impulsive noises. Using Price's theorem and its extension, the above algorithms can be treated in a single framework respectively for Gaussian and impulsive noise environments. Further, by introducing new special integral functions, related expectations can be evaluated so as to obtain decoupled difference equations which describe the mean and mean square behaviors of the TDNLMS and TDNLMM algorithms. These analytical results reveal the advantages of the TDNLMM algorithm in impulsive noise environment, and are in good agreement with computer simulation results. © 2010 The Author(s).
机译:本文研究了具有一般非线性的变换域归一化最小均方(TDNLMS)算法和在高斯输入以及加性高斯和脉冲噪声环境下的变换域归一化最小均方M估计(TDNLMM)算法的收敛性能。从鲁棒的M估计派生而来的TDNLMM算法在抵抗脉冲噪声方面具有优于常规TDNLMS算法的性能。使用Price定理及其扩展,可以将上述算法分别在单个框架中用于高斯和脉冲噪声环境。此外,通过引入新的特殊积分函数,可以评估相关期望值,以获得解耦的差分方程,该方程描述了TDNLMS和TDNLMM算法的均方和均方行为。这些分析结果揭示了TDNLMM算法在脉冲噪声环境中的优势,并且与计算机仿真结果非常吻合。 ©2010作者。

著录项

  • 作者

    Zhou Y; Chan SC;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号