首页> 外文OA文献 >Yue’s solution of classical elasticity in n-layered solids: Part 2, mathematical verification
【2h】

Yue’s solution of classical elasticity in n-layered solids: Part 2, mathematical verification

机译:Yue在n层固体中经典弹性的解:第2部分,数学验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a detailed and rigorous mathematical verification of Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution in the companion paper for the classical theory of elasticity in n-layered solid. It involves three levels of the mathematical verifications. The first level is to show that Yue’s solution can be automatically and uniformly degenerated into these classical solutions in closed-form such as Kelvin’s, Boussinesq’s, Mindlin’s and bimaterial’s solutions when the material properties and boundary conditions are the same. This mathematical verification also gives and serves a clear and concrete understanding on the mathematical properties and singularities of Yue’s solution in n-layered solids. The second level is to analytically and rigorously show the convergence and singularity of the solution and the satisfaction of the solution to the governing partial differential equations, the interface conditions, the external boundary conditions and the body force loading conditions. This verification also provides the easy and executable means and results for the solutions in n-layered or graded solids to be calculated with any controlled accuracy in association with classical numerical integration techniques. The third level is to demonstrate the applicability and suitability of Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution to uniformly and systematically derive and formulate exact and complete solutions for other boundary-value problems, mixed-boundary value problems, and initial-boundary value problems in layered solids in the frameworks of classical elasticity, boundary element methods, elastodynamics, Biot’s theory of poroelasticity and thermoelasticity. All of such applications are substantiated by peerreviewed journal publications made by the author and his collaborators over the past 30 years.
机译:本文在有关n层固体经典弹性理论的随行论文中,对岳的方法,岳的处理方法,岳的方法和岳的解决方案进行了详细而严格的数学验证。它涉及三个级别的数学验证。第一层表明,当材料特性和边界条件相同时,Yue的解决方案可以自动和统一地退化为封闭形式的这些经典解决方案,例如Kelvin,Boussinesq,Mindlin和bimaterial的解决方案。该数学验证还对岳氏溶液在n层固体中的数学性质和奇异性给出了明确的具体理解。第二层是分析性地和严格地显示解的收敛性和奇异性,以及对于支配的偏微分方程,界面条件,外边界条件和体力加载条件的解的满足性。该验证还提供了简便且可执行的方法和结果,可以结合传统的数值积分技术以任何可控制的精度计算n层或渐变固体中的溶液。第三层次是证明岳的方法,岳的处理方法,岳的方法和岳的解决方案的适用性和适用性,以统一,系统地推导和制定针对其他边值问题,混合边界值问题和初始边界的精确和完整的解决方案。在经典弹性,边界元方法,弹性动力学,Biot的多孔弹性和热弹性理论的框架内,层状固体中存在价值问题。作者和他的合作者在过去30年中所做的同行评审期刊出版物证实了所有这些申请。

著录项

  • 作者

    Yue QZQ;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号