首页> 外文OA文献 >Yue’s solution of classical elasticity in n-layered solids: Part 1, mathematical formulation
【2h】

Yue’s solution of classical elasticity in n-layered solids: Part 1, mathematical formulation

机译:Yue在n层固体中经典弹性的解决方案:第1部分,数学公式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents the exact and complete fundamental singular solutions for the boundary value problem of a n-layered elastic solid of either transverse isotropy or isotropy subject to body force vector at the interior of the solid. The layer number n is an arbitrary nonnegative integer. The mathematical theory of linear elasticity is one of the most classical field theories in mechanics and physics. It was developed and established by many well-known scientists and mathematicians over 200 years from 1638 to 1838. For more than 150 years from 1838 to present, one of the remaining key tasks in classical elasticity has been the mathematical derivation and formulation of exact solutions for various boundary value problems of interesting in science and engineering. However, exact solutions and/or fundamental singular solutions in closed form are still very limited in literature. The boundary-value problems of classical elasticity in n-layered and graded solids are also one of the classical problems challenging many researchers. Since 1984, the author has analytically and rigorously examined the solutions of such classical problems using the classical mathematical tools such as Fourier integral transforms. In particular, he has derived the exact and complete fundamental singular solutions for elasticity of either isotropic or transversely isotropic layered solids subject to concentrated loadings. The solutions in nlayered or graded solids can be calculated with any controlled accuracy in association with classical numerical integration techniques. Findings of this solution formulation are further used in the companion paper for mathematical verification of the solutions and further applications for exact and complete solutions of other problems in elasticity, elastodynamics, poroelasticty and thermoelasticity. The mathematical formulations and solutions have been named by other researchers as Yue’s approach, Yue’s treatment, Yue’s method and Yue’s solution.
机译:本文针对横向等向性或各向同性的n层弹性固体的边界值问题,提供了精确而完整的基本奇异解,该奇异解受固体内部的力矢量的影响。层号​​n是任意的非负整数。线性弹性数学理论是力学和物理学中最经典的领域理论之一。它是由许多著名的科学家和数学家在1638年至1838年的200多年间开发和建立的。从1838年至今的150多年中,经典弹性中剩下的关键任务之一是数学推导和精确解的形成用于科学和工程领域中有趣的各种边值问题。但是,在文献中,封闭形式的精确解和/或基本奇异解仍然非常有限。 n层和渐变固体中经典弹性的边值问题也是挑战许多研究人员的经典问题之一。自1984年以来,作者就使用诸如傅立叶积分变换之类的经典数学工具,对此类经典问题的解决方案进行了分析和严格的检验。特别是,他得出了在集中载荷作用下各向同性或横向各向同性分层固体的弹性的精确而完整的基本奇异解。可以结合传统的数值积分技术,以任何可控制的精度计算层状或渐变固体中的溶液。该解决方案公式化的结果将在随附的论文中进一步用于解决方案的数学验证,以及在弹性,弹性动力学,多孔弹性和热弹性等其他问题的精确和完整解决方案中的进一步应用。数学公式和解已被其他研究人员称为“岳的方法”,“岳的处理方法”,“岳的方法”和“岳的解决方案”。

著录项

  • 作者

    Yue QZQ;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号