首页> 外文OA文献 >Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment
【2h】

Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment

机译:随机小区传输模型(sCTm):交通状态监测和分配的随机动态交通模型

摘要

The paper proposes a first-order macroscopic stochastic dynamic traffic model, namely the stochastic cell transmission model (SCTM), to model traffic flow density on freeway segments with stochastic demand and supply. The SCTM consists of five operational modes corresponding to different congestion levels of the freeway segment. Each mode is formulated as a discrete time bilinear stochastic system. A set of probabilistic conditions is proposed to characterize the probability of occurrence of each mode. The overall effect of the five modes is estimated by the joint traffic density which is derived from the theory of finite mixture distribution. The SCTM captures not only the mean and standard deviation (SD) of density of the traffic flow, but also the propagation of SD over time and space. The SCTM is tested with a hypothetical freeway corridor simulation and an empirical study. The simulation results are compared against the means and SDs of traffic densities obtained from the Monte Carlo Simulation (MCS) of the modified cell transmission model (MCTM). An approximately two-miles freeway segment of Interstate 210 West (I-210W) in Los Ageles, Southern California, is chosen for the empirical study. Traffic data is obtained from the Performance Measurement System (PeMS). The stochastic parameters of the SCTM are calibrated against the flow-density empirical data of I-210W. Both the SCTM and the MCS of the MCTM are tested. A discussion of the computational efficiency and the accuracy issues of the two methods is provided based on the empirical results. Both the numerical simulation results and the empirical results confirm that the SCTM is capable of accurately estimating the means and SDs of the freeway densities as compared to the MCS. © 2010 Elsevier Ltd.
机译:提出一种一阶宏观随机动态交通模型,即随机信元传输模型(SCTM),以具有随机需求和供给的高速公路路段交通流量密度建模。 SCTM由五种操作模式组成,分别对应于高速公路路段的不同拥堵程度。每种模式都被表述为离散时间双线性随机系统。提出了一组概率条件来表征每种模式出现的概率。这五个模式的总体效果由联合交通密度估算,联合交通密度源自有限混合分布理论。 SCTM不仅捕获交通流密度的均值和标准差(SD),而且还捕获SD在时间和空间上的传播。 SCTM通过假设的高速公路走廊仿真和实证研究进行了测试。将模拟结果与从修改后的小区传输模型(MCTM)的蒙特卡罗模拟(MCS)获得的话务量密度的均值和SD进行比较。实证研究选择了位于南加利福尼亚州洛斯阿格莱斯的西210州际公路(I-210W)大约两英里的高速公路路段。流量数据是从性能评估系统(PeMS)获得的。针对I-210W的流量密度经验数据,对SCTM的随机参数进行了校准。 MCTM的SCTM和MCS均经过测试。基于经验结果,对两种方法的计算效率和精度问题进行了讨论。数值模拟结果和经验结果均证实,与MCS相比,SCTM能够准确估算高速公路密度的均值和SD。 ©2010爱思唯尔有限公司。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号