首页> 外文OA文献 >Cooperative sensing and compression in vehicular sensor networks for urban monitoring
【2h】

Cooperative sensing and compression in vehicular sensor networks for urban monitoring

机译:用于城市监测的车载传感器网络中的协同传感和压缩

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A Vehicular Sensor Network (VSN) may be used for urban environment surveillance utilizing vehicle-based sensors to provide an affordable yet good coverage for the urban area. The sensors in VSN enjoy the vehicle's steady power supply and strong computational capacity not available in traditional Wireless Sensor Network (WSN). However, the mobility of the vehicles results in highly dynamic and unpredictable network topology, leading to packet losses and distorted surveillance results. To resolve these problems, we propose a cooperative data sensing and compression approach with zero inter-sensor collaboration overhead based on sparse random projections. The algorithm provides excellent reconstruction accuracy for the sensed field, and by taking advantage of the spatial correlation of the data, enjoys much smaller communication traffic load compared to traditional sampling algorithms in wireless sensor networks. Real urban environment data sets are used in the experiments to test the reconstruction accuracy and energy efficiency under different vehicular mobility models. The results show that our approach is superior to the conventional sampling and interpolation strategy which propagates data in an uncompressed form, with 4-5dB gain in reconstruction quality and 21-55% savings in communication cost for the same sampling times. ©2010 IEEE.
机译:车辆传感器网络(VSN)可用于利用基于车辆的传感器的城市环境监视,以为城市区域提供负担得起的但良好的覆盖范围。 VSN中的传感器享有车辆的稳定电源和强大的计算能力,这是传统无线传感器网络(WSN)所无法提供的。但是,车辆的机动性导致高度动态且不可预测的网络拓扑,从而导致数据包丢失和监视结果失真。为了解决这些问题,我们提出了一种基于稀疏随机投影的零传感器间协作开销的协作数据传感和压缩方法。与无线传感器网络中的传统采样算法相比,该算法为感测场提供了出色的重建精度,并且通过利用数据的空间相关性,通信流量负载要小得多。实验中使用了真实的城市环境数据集来测试不同车辆机动性模型下的重建精度和能效。结果表明,我们的方法优于传统的采样和插值策略,该策略以未压缩的形式传播数据,在相同采样时间内,重建质量提高了4-5dB,通信成本节省了21-55%。 ©2010 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号