首页> 外文期刊>Wireless Sensor Systems, IET >Efficient sampling and compressive sensing for urban monitoring vehicular sensor networks
【24h】

Efficient sampling and compressive sensing for urban monitoring vehicular sensor networks

机译:用于城市监控车辆传感器网络的高效采样和压缩感测

获取原文
获取原文并翻译 | 示例

摘要

Vehicular sensor network (VSN) using vehicle-based sensors is an emerging technology that can provide an inexpensive solution for surveillance and urban monitoring applications. For the constantly moving vehicles, resulting in unpredictable network topology, data transmission in VSN is vulnerable to packet losses, thus deteriorating the surveillance quality. To resolve this problem, a cooperative data sampling and compression approach is proposed. Based on compressive sensing, this approach does not require inter-sensor communication and adopts sparse random projections to remove redundancy in spatially neighbouring measurements. It is experimentally shown that the proposed algorithm provides fairly accurate reconstruction of the field under surveillance, and incurs much less communication traffic load compared to conventional sampling strategies. Practical data sets, including the temperature distribution in Beijing and the global position system (GPS) tracking data of over 6000 taxis in the city, are used in our experiments to verify the reconstruction accuracy and energy efficiency of the scheme. Different vehicular mobility models are also employed to study the impact of movement behavior. Simulation results show that our proposed approach outperforms the conventional sampling and interpolation strategy, which propagates data in uncompressed format, by 5 dB in reconstruction quality and by 50% in communication complexity reduction for the same sampling rate.
机译:使用基于车辆的传感器的车辆传感器网络(VSN)是一种新兴技术,可以为监视和城市监控应用提供廉价的解决方案。对于经常行驶的车辆,导致不可预测的网络拓扑,VSN中的数据传输容易受到数据包丢失的影响,从而降低了监视质量。为了解决这个问题,提出了一种协作数据采样和压缩方法。基于压缩感测,此方法不需要传感器之间的通信,并采用稀疏的随机投影来消除空间相邻测量中的冗余。实验表明,与常规采样策略相比,所提出的算法可对监视下的场提供相当准确的重构,并且通信流量负荷要少得多。我们的实验中使用了实用的数据集,包括北京的温度分布以及城市中超过6000辆出租车的全球定位系统(GPS)跟踪数据,以验证该方案的重建准确性和能效。不同的车辆流动性模型也被用来研究运动行为的影响。仿真结果表明,我们提出的方法优于传统的采样和插值策略,该策略以未压缩格式传播数据,在相同采样速率下,重建质量降低了5 dB,通信复杂度降低了50%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号