首页> 外文OA文献 >WiBOX - Une passerelle pour une réception robuste de vidéo diffusée via WIMAX et une rediffusion indoor via WIFI
【2h】

WiBOX - Une passerelle pour une réception robuste de vidéo diffusée via WIMAX et une rediffusion indoor via WIFI

机译:WiBOX - 通过WImaX强大接收视频广播和通过WIFI进行室内重播的网关

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This PhD study intends to investigate the tools necessary to implement a device (the WiBOX), which can robustly receive video broadcast over WiMAX and then rebroadcast it over WiFi. WiBOX should not only provide WiMAX services access to a WiFi user, but it should also achieve reasonable video quality even with a very weak WiMAX signal, and at the same time for WiFi rebroadcast, it should utilize alternative recovery techniques and avoid delays caused by the conventional retransmissions. This would help to improve WiFi user quality and to remain consistent with the broadcast scenario. To achieve the said objectives one has to consider several robust tools, which are often deployed to solve problems, like packet loss, synchronization failures, high delay, throughput etc., encountered while receiving video through a WiMAX/WiFi-link. These robust tools can be deployed at several protocol layers, among them few notable are, e.g., Joint Source Channel Decoding (JSCD) techniques deployed at the application (APL) layer, iterative decoding techniques deployed at the physical (PHY) layer, and header recovery, estimation, or synchronization tools deployed at various layers. For an efficient performance of these robust tools some cross-layer approach to enable exchange of useful information between the protocol layers and the complete analysis of the protocol stack is required. Some of these tools have requirements that are not compliant with the Standard Protocol Stack (SPS) and require Soft-Permeable Protocol Stack (SPPS), which can allow flow of erroneous packets, containing the soft information, e.g., A Posteriori Probabilities (APP) or likelihood ratios, to the higher layers. More importantly, for performance enhancement these tools should mutually benefit and reinforce each other instead of undoing each other's advantage. To increase the throughput, in both WiMAX and WiFi communication standards, packet aggregation is used; several packets are aggregated at a given layer of the protocol stack in the same burst to be transmitted. One can deploy Frame Synchronization (FS), i.e., to synchronize and recover the aggregated packets, however, when transmission over a noisy channel is considered, FS can cause loss of several error-free or partially errorfree packets, which could otherwise be beneficial for other tools, e.g., JSCD and header recovery tools, functioning at higher layers of the S-PPS. Rebroadcasting video over WiFi can significantly increase packet loss rate as the retransmission is omitted, which can be overcome by the packet-level Forward Error Correction (FEC) techniques. The FS and packet-level FEC decoder for S-PPS should not only allow flow of soft information from the PHY layer but should also mutually benefit from the JSC decoders deployed at the APL layer. In this thesis, we propose several Joint Protocol-Channel Decoding (JPCD) techniques for FS and packet-level FEC decoders operating at S-PPS. In the first part of this thesis, we propose several robust FS methods for S-PPS based on the implicit redundancies present in protocol and the soft information from the soft decoders at PHY layer. First, we propose a trellis-based algorithm that provides the APPs of packet boundaries. The possible successions of packets forming an aggregated packet are described by a trellis. The resulting algorithm is very efficient (optimal in some sense), but requires the knowledge of the whole aggregated packet beforehand, which might not be possible in latency-constrained situations. Thus in a second step, we propose a low-delay and reduced-complexity Sliding Trellis (ST)-based FS technique, where each burst is divided into overlapping windows in which FS is performed. Finally, we propose an on-the-fly three-state (3S) automaton, where packet length is estimated utilizing implicit redundancies and Bayesian hypothesis testing is performed to retrieve the correct FS. These methods are illustrated for the WiMAX Medium Access Control (MAC) layer and do not need any supplementary framing information. Practically, these improvements will result in increasing the amount of packets that can reach the JSC decoders. In the second part, we propose robust packet-level FEC decoder for S-PPS, which in addition to utilizing the introduced redundant FEC packets, uses the soft information (instead of hard bits, i.e., bit-stream of '1's and '0's) provided by the PHY layer along with the protocol redundancies, in order to provide robustness against bit error. Though, it does not impede the flow of soft information as required for S-PPS, it needs support from the header recovery techniques at the lower layers to forward erroneous packets and from the JSC decoders at the APL layer to detect and remove remaining errors. We have investigated the standard RTP-level FEC, and compared the performance of the proposed FEC decoder with alternative approaches. The proposed FS and packet-level FEC techniques would reduce the amount of packets dropped, increase the number of packets relayed to the video decoder functioning at APL layer, and improve the received video quality.
机译:这项博士研究旨在研究实现设备(WiBOX)所需的工具,该设备可以稳健地接收通过WiMAX广播的视频,然后通过WiFi重新广播。 WiBOX不仅应向WiFi用户提供WiMAX服务访问权限,而且即使在WiMAX信号非常弱的情况下也应达到合理的视频质量,并且在进行WiFi重播的同时,WiBOX还应使用其他恢复技术,并避免因WiMAX造成的延迟。常规重传。这将有助于提高WiFi用户质量,并与广播场景保持一致。为了实现上述目标,必须考虑几种健壮的工具,这些工具通常用于解决通过WiMAX / WiFi链路接收视频时遇到的问题,例如数据包丢失,同步失败,高延迟,吞吐量等。这些健壮的工具可以部署在多个协议层,其中很少有值得注意的,例如,部署在应用程序(APL)层的联合源信道解码(JSCD)技术,部署在物理(PHY)层的迭代解码技术和标头在各个层上部署的恢复,估计或同步工具。为了有效地利用这些强大的工具,需要一些跨层方法来实现协议层之间的有用信息交换以及对协议栈的完整分析。其中一些工具的要求与标准协议栈(SPS)不兼容,并且需要软渗透协议栈(SPPS),这可能会允许包含软信息(例如后验概率(APP))的错误数据包流向或似然比。更重要的是,为了提高性能,这些工具应互利互惠,而不是相互抵消。为了提高吞吐量,在WiMAX和WiFi通信标准中,都使用了数据包聚合。在同一突发中,要在协议堆栈的给定层聚合几个数据包以进行传输。可以部署帧同步(FS),即同步并恢复聚合的数据包,但是,当考虑通过嘈杂的信道进行传输时,FS可能会导致丢失几个无错误或部分无错误的数据包,否则可能对其他工具,例如JSCD和标头恢复工具,在S-PPS的较高层上起作用。由于省略了重传,因此通过WiFi重播视频会大大增加丢包率,这可以通过数据包级前向纠错(FEC)技术来克服。用于S-PPS的FS和数据包级FEC解码器不仅应允许来自PHY层的软信息流,而且还应从部署在APL层的JSC解码器互惠互利。本文针对在S-PPS上运行的FS和分组级FEC解码器,提出了几种联合协议信道解码(JPCD)技术。在本文的第一部分,我们基于协议中存在的隐式冗余和来自PHY层软解码器的软信息,提出了几种针对S-PPS的鲁棒FS方法。首先,我们提出了一种基于网格的算法,该算法可提供包边界的APP。网格描述形成聚合分组的分组的可能连续序列。生成的算法非常有效(在某种意义上说是最优的),但是需要事先了解整个聚合数据包,这在延迟受限的情况下可能是不可能的。因此,在第二步中,我们提出了一种基于低延迟和降低复杂度的滑动网格(ST)的FS技术,其中,每个突发都被划分为执行FS的重叠窗口。最后,我们提出了一种实时的三态(3S)自动机,其中使用隐式冗余估算数据包长度,并执行贝叶斯假设测试以检索正确的FS。这些方法针对WiMAX媒体访问控制(MAC)层进行了说明,不需要任何补充成帧信息。实际上,这些改进将导致可以到达JSC解码器的数据包数量增加。在第二部分中,我们为S-PPS提出了健壮的分组级FEC解码器,该解码器除了利用引入的冗余FEC分组外,还使用软信息(而不是硬比特,即“ 1”和“ 0”的比特流)由PHY层提供)以及协议冗余,以提供针对误码的鲁棒性。虽然,它不会像S-PPS那样阻碍软信息的流动,但它需要来自较低层的报头恢复技术以转发错误的数据包以及来自APL层的JSC解码器以检测和消除剩余错误的支持。我们已经研究了标准的RTP级FEC,并将提议的FEC解码器的性能与其他方法进行了比较。所提出的FS和分组级FEC技术将减少丢弃的分组数量,增加中继到在APL层起作用的视频解码器的分组的数量,并改善接收的视频质量。

著录项

  • 作者

    Ali Usman;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号