首页> 外文OA文献 >Towards Developing a Travel Time Forecasting Model for Location-Based Services: a Review
【2h】

Towards Developing a Travel Time Forecasting Model for Location-Based Services: a Review

机译:构建基于位置的服务的旅行时间预测模型:回顾

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Travel time forecasting models have been studied intensively as a subject of Intelligent Transportation Systems (ITS), particularly in the topics of advanced traffic management systems (ATMS), advanced traveler information systems (ATIS), and commercial vehicle operations (CVO). While the concept of travel time forecasting is relatively simple, it involves a notably complicated task of implementing even a simple model. Thus, existing forecasting models are diverse in their original formulations, including mathematical optimizations, computer simulations, statistics, and artificial intelligence. A comprehensive literature review, therefore, would assist in formulating a more reliable travel time forecasting model. On the other hand, geographic information systems (GIS) technologies primarily provide the capability of spatial and network database management, as well as technology management. Thus, GIS could support travel time forecasting in various ways by providing useful functions to both the managers in transportation management and information centers (TMICs) and the external users. Thus, in developing a travel time forecasting model, GIS could play important roles in the management of real-time and historical traffic data, the integration of multiple subsystems, and the assistance of information management. The purpose of this paper is to review various models and technologies that have been used for developing a travel time forecasting model with geographic information systems (GIS) technologies. Reviewed forecasting models in this paper include historical profile approaches, time series models, nonparametric regression models, traffic simulations, dynamic traffic assignment models, and neural networks. The potential roles and functions of GIS in travel time forecasting are also discussed.
机译:行驶时间预测模型已作为智能交通系统(ITS)的主题进行了深入研究,特别是在高级交通管理系统(ATMS),高级旅行者信息系统(ATIS)和商用车运营(CVO)的主题中。尽管旅行时间预测的概念相对简单,但是即使实施简单的模型,它也涉及一项极为复杂的任务。因此,现有的预测模型在其原始公式中是多种多样的,包括数学优化,计算机模拟,统计和人工智能。因此,全面的文献综述将有助于制定更可靠的旅行时间预测模型。另一方面,地理信息系统(GIS)技术主要提供空间和网络数据库管理以及技术管理的功能。因此,GIS可以通过为运输管理和信息中心(TMIC)的管理人员以及外部用户提供有用的功能,以各种方式支持旅行时间预测。因此,在开发旅行时间预测模型时,GIS可以在实时和历史交通数据管理,多个子系统的集成以及信息管理的协助中发挥重要作用。本文的目的是回顾已用于通过地理信息系统(GIS)技术开发旅行时间预测模型的各种模型和技术。本文中回顾过的预测模型包括历史剖面方法,时间序列模型,非参数回归模型,交通模拟,动态交通分配模型和神经网络。还讨论了GIS在旅行时间预测中的潜在作用和功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号