首页> 外文OA文献 >Consumption and asset prices with recursive preferences: Continuous-time approximations to discrete-time models
【2h】

Consumption and asset prices with recursive preferences: Continuous-time approximations to discrete-time models

机译:具有递归偏好的消费和资产价格:离散时间模型的连续时间近似值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents tractable and efficient numerical solutions to general equilibrium models of asset prices and consumption where the representative agent has recursive preferences. It provides a discrete-time presentation of the approach of Fisher and Gilles (1999), treating continuous-time representations as approximations to discrete-time "truth." First, exact discrete-time solutions are derived, illustrating the following ideas: (i) The price-dividend ratio (such as the wealth-consumption ratio) is a perpetuity (the canonical infinitely lived asset), the value of which is the sum of dividend-denominated bond prices, and (ii) the positivity of the dividend-denominated asymptotic forward rate is necessary and sufficient for the convergence of value function iteration for an important class of models. Next, continuous-time approximations are introduced. By assuming the size of the time step is small, first-order approximations in the step size provide the same analytical flexibility to discrete-time modeling as Ito's lemma provides in continuous time. Moreover, it is shown that differential equations provide an efficient platform for value function iteration. Last, continuous-time normalizations are adopted, providing an efficient solution method for recursive preferences.
机译:本文提出了具有代表性的主体具有递归偏好的资产价格和消费一般均衡模型的易处理且有效的数值解。它提供了Fisher和Gilles(1999)方法的离散时间表示,将连续时间表示作为离散时间“真相”的近似值。首先,得出精确的离散时间解,并说明以下思想:(i)价格-股息比率(例如财富-消费比率)是永久性(规范的无限生命资产),其价值是总和股利计价的债券价格,以及(ii)股利计价的渐进远期利率的正数对于一类重要的模型的价值函数迭代收敛是必要和充分的。接下来,引入连续时间近似。通过假设时间步长较小,步长的一阶近似值可以为离散时间建模提供与Ito引理在连续时间中提供的相同的分析灵活性。此外,证明了微分方程为值函数的迭代提供了有效的平台。最后,采用连续时间归一化,为递归偏好提供了一种有效的解决方法。

著录项

  • 作者

    Fisher Mark;

  • 作者单位
  • 年度 1999
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号