首页> 外文OA文献 >Prediction of Land use change in urbanization control districts using neural network - A Case Study of Regional Hub City in Japan
【2h】

Prediction of Land use change in urbanization control districts using neural network - A Case Study of Regional Hub City in Japan

机译:基于神经网络的城市化控制区土地利用变化预测 - 以日本区域枢纽城市为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Land use is changeable in the urban area, depending upon the economical mechanism of market. The controlled urbanization area is made a region where the urbanization should be controlled by the city planning and zoning act. However, in the zone, there are also many areas where form regulation of the building is looser than the urbanization zone which should form a city area. Therefore disorderly development acts, such as location of the large-scale commercial institution and leisure facilities unsuitable for circumference environment, are accepted in the controlled urbanization area. On the other hand, energies decrease in existing village by population decrease and declining birthrate and a growing proportion of elderly people become a problem. In order to cope with this problem, it is important to understand the past conditions of land use for the urban planning. This paper describes the spatial structure of urbanization control districts based on the present conditions and the change structure of land use by using mesh data surveyed and the copy of the development permission register in a local hub-city in Japan. Land use forecasting systems are designed using neural network. Although land use is classified separately in every surveyed year, the common classification of land use is proposed, considering the similarity of spatial distributions and the physical meanings of land use. Then, the distribution by mesh at each division of land use is studied. Spatial distribution of land use and its transition are also discussed. Next, land use forecasting models are made out using neural network. The feature and structure of change in the land use of an area depends on whether development projects are carried out or not. Therefore, all of the meshes are divided into two groups, and forecasting models are designed. Though our proposed approach is a macroscopic forecasting method of land use, it is useful in the investigation of urban policies for development projects and in the evaluation of their effects.
机译:取决于市场的经济机制,城市地区的土地用途是可变的。受控的城市化区域成为应通过城市规划和分区法案控制城市化的区域。但是,在该区域中,也有许多区域的建筑物形状规定要比应该形成城市区域的城市化区域宽松。因此,在受控的城市化地区,人们接受了无序的发展行为,例如大型商业机构的所在地和不适合周边环境的休闲设施。另一方面,由于人口减少和出生率下降,现有村庄的能源减少,老年人的比例增加成为问题。为了解决这个问题,重要的是要了解过去城市规划中土地使用的条件。本文利用调查的网格数据和日本当地枢纽城市的发展许可登记簿的副本,根据当前条件描述了城市化控制区的空间结构,并描述了土地利用的变化结构。土地利用预测系统是使用神经网络设计的。尽管在每个调查年度中都会对土地利用进行单独分类,但考虑到空间分布的相似性和土地利用的物理意义,建议对土地利用进行通用分类。然后,研究了每个土地利用分区的网格分布。还讨论了土地利用的空间分布及其过渡。接下来,使用神经网络建立土地利用预测模型。一个地区的土地利用变化的特征和结构取决于是否执行开发项目。因此,将所有网格划分为两组,并设计了预测模型。尽管我们提出的方法是土地使用的宏观预测方法,但它对于研究开发项目的城市政策及其效果评估很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号