首页> 外文OA文献 >Formulating the water distribution system equations in terms of head and velocity
【2h】

Formulating the water distribution system equations in terms of head and velocity

机译:根据水头和水流速度制定配水系统方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The set of equations for solving for pressures and flows in water distribution systems are non‐linear due to the head loss‐velocity relationship for each of the pipes. The solution of these non‐linear equations for the heads and flows is usually based on the Todini and Pilati method. The method is an elegant way of formulating the equations. A Newton solution method is used to solve the equations whereby the special structure of the Jacobian is exploited to minimize the computations and this leads to an extremely fast algorithm. Each iteration firstly solves for the heads and then solves for the flows. In the EPANET implementation of the Todini and Pilati algorithm an initial guess of the flows is based on an assumed velocity of 1.0 fps (0.305 m/s) in each pipe in the network. Each flow is then determined from the continuity equation by multiplying the assumed velocity by the area. Usually velocities in pipes are in the range of 0.5 to 1.5 m/s (and perhaps sometimes higher up to 3 or 4 m/s). Thus the velocities to be solved for are all of the same order of magnitude. In contrast, the range of discharges may be quite large in a system — ranging from below 10 L/s up to above 700 L/s — thus possibly three orders of magnitude of difference. As an alternative to the usual formulation of the Todini and Pilati method in terms of flows and heads, this paper recasts the Todini and Pilati formulation in terms of heads and velocities to attempt to improve the convergence properties. Results are compared for the two formulations for a range of networks from 553 to 10,354 pipes. Convergence criteria for stopping the iterative solution process are discussed. The impact of the initial guess of the velocities in each of the pipes in the network on the convergence behavior is also investigated. Statistics on mean flows and velocities in the network and the minimum and maximum velocities for each of the example networks are given and finally operation counts are also provided for these networks.
机译:由于每个管道的水头损失-流速关系,用于求解配水系统中压力和流量的方程组是非线性的。这些用于水头和水流的非线性方程的解通常基于Todini和Pilati方法。该方法是公式化公式的一种优雅方式。牛顿解法用于求解方程,从而利用雅可比行列式的特殊结构来最小化计算,这导致了极其快速的算法。每次迭代首先求解头,然后求解流。在Todini和Pilati算法的EPANET实现中,对流量的初始猜测是基于网络中每条管道中1.0 fps(0.305 m / s)的假定速度。然后,通过将假定速度乘以面积,从连续性方程式确定每个流量。通常,管道中的速度在0.5到1.5 m / s的范围内(有时可能高达3或4 m / s)。因此,要求解的速度都处于相同的数量级。相比之下,系统中的放电范围可能会很大-从低于10 L / s到高于700 L / s不等-因此可能相差三个数量级。作为在流量和水头方面常用的Todini和Pilati方法公式的替代方法,本文从水头和速度方面重新介绍了Todini和Pilati公式,以试图改善收敛性。比较了两种配方在553至10,354管网范围内的结果。讨论了用于停止迭代求解过程的收敛准则。还研究了网络中每条管道的速度初始猜测对收敛行为的影响。给出了有关网络中平均流量和速度以及每个示例网络的最小和最大速度的统计信息,最后还为这些网络提供了操作计数。

著录项

  • 作者

    Simpson A.; Elhay S.;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号