首页> 外文OA文献 >Testing proposals for the Yang-Mills vacuum wavefunctional by measurement of the vacuum
【2h】

Testing proposals for the Yang-Mills vacuum wavefunctional by measurement of the vacuum

机译:通过测量真空度测试Yang-mills真空波功能的建议

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We review a method, suggested many years ago, to numerically measure the relative amplitudes of the true Yang-Mills vacuum wavefunctional in a finite set of lattice-regulated field configurations. The technique is applied in 2+1 dimensions to sets of abelian plane wave configurations of varying amplitude and wavelength, and sets of non-abelian constant configurations. The results are compared to the predictions of several proposed versions of the Yang-Mills vacuum wavefunctional that have appeared in the literature. These include (i) a suggestion in temporal gauge due to Greensite and Olejník; (ii) the “new variables” wavefunction put forward by Karabali, Kim, and Nair; (iii) a hybrid proposal combining features of the temporal gauge and new variables wavefunctionals; and (iv) Coulomb gauge wavefunctionals developed by Reinhardt and co-workers, and by Szczepaniak and co-workers. We find that wavefunctionals which simplify to a “dimensional reduction” form at large scales, i.e. which have the form of a probability distribution for two-dimensional lattice gauge theory, when evaluated on long-wavelength configurations, have the optimal agreement with the data.
机译:我们回顾了很多年前提出的一种方法,该方法在有限的一组晶格调节场配置中,以数字方式测量真实的Yang-Mills真空波函数的相对幅度。该技术以2 + 1维度应用于振幅和波长变化的阿贝尔平面波配置集以及非阿贝尔常数配置集。将结果与文献中出现的Yang-Mills真空波函数的几种提议版本的预测结果进行比较。其中包括:(i)Greensite和Olejník提出的时间尺度建议; (ii)Karabali,Kim和Nair提出的“新变量”波函数; (iii)结合时间标尺和新的波动函数特征的混合提案; (iv)Reinhardt和他的同事以及Szczepaniak和他的同事开发的库仑计波函数。我们发现,在长波长配置上进行评估时,大范围简化为“降维”形式的波函数(即具有二维晶格规理论概率分布的形式)具有与数据的最佳一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号