首页> 外文OA文献 >Encapsulation of C(60) fullerenes into single-walled carbon nanotubes: Fundamental mechanical principles and conventional applied mathematical modeling
【2h】

Encapsulation of C(60) fullerenes into single-walled carbon nanotubes: Fundamental mechanical principles and conventional applied mathematical modeling

机译:将C(60)富勒烯封装成单壁碳纳米管:基本机械原理和常规应用数学建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A well-known self-assembled hybrid carbon nanostructure is a nanopeapod which may be regarded as the prototype nanocarrier for drug delivery. While the investigation of the packing of C₆₀ molecules inside a carbon nanotube is usually achieved through either experimentation or large scale computation, this paper adopts elementary mechanical principles and classical applied mathematical modeling techniques to formulate explicit analytical criteria and ideal model behavior for such encapsulation. In particular, we employ the Lennard-Jones potential and the continuum approximation to determine three encapsulation mechanisms for a C₆₀ fullerene entering a tube: (i) through the tube open end (head-on), (ii) around the edge of the tube open end, and (iii) through a defect opening on the tube wall. These three encapsulation mechanisms are undertaken for each of the three specific carbon nanotubes (10,10), (16,16), and (20,20). We assume that all configurations are in vacuum and the C₆₀ fullerene is initially at rest. Double integrals are performed to determine the energy of the system and analytical expressions are obtained in terms of hypergeometric functions. Our results suggest that the C₆₀ fullerene is most likely to be encapsulated by head-on through the open tube end and that encapsulation around the tube edge is least likely to occur because of the large van der Waals energy barriers which exist at the tube ends.
机译:众所周知的自组装杂化碳纳米结构是纳米豆荚,其可以被认为是药物递送的原型纳米载体。尽管通常通过实验或大规模计算来完成对C₆₀分子在碳纳米管内部堆积的研究,但本文采用基本的机械原理和经典的应用数学建模技术来为这种封装制定明确的分析标准和理想的模型行为。特别是,我们利用Lennard-Jones势和连续近似来确定进入管的Cer富勒烯的三种包封机制:(i)通过管的开口端(正面),(ii)围绕管的边缘(iii)穿过管壁上的缺陷开口。对于三个特定的碳纳米管(10,10),(16,16)和(20,20)中的每一个都采用了这三种封装机制。我们假定所有构型都处于真空中,而C 3富勒烯最初处于静止状态。执行双积分以确定系统的能量,并根据超几何函数获得解析表达式。我们的结果表明,C 3富勒烯最有可能通过敞开的管端正面被包封,并且由于存在于管端的大范德华能垒,最不可能发生在管边缘周围的包封。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号