首页> 外文OA文献 >Investigation of Rarefied Supersonic Flows Into Rectangular Nanochannels Using a Three-Dimensional Direct Simulation Monte Carlo Method
【2h】

Investigation of Rarefied Supersonic Flows Into Rectangular Nanochannels Using a Three-Dimensional Direct Simulation Monte Carlo Method

机译:利用三维直接模拟蒙特卡罗方法研究稀薄超声波流入矩形纳米通道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rarefied flow of nitrogen with speed ratio (mean speed over most probable speed) of S = 2,5,10, pressure of 10.132 kPa into rectangular nanochannels with height of 100, 500, and 1000 nm is investigated using a three-dimensional, unstructured, direct simulation Monte Carlo method. The parametric computational investigation considers rarefaction effects with Knudsen number Kn=0.481,0.962, 4.81, geometric effects with nanochannel aspect ratios of (L/H) from AR=1,10, 100, and back-pressure effects with imposed pressures from 0 to 200 kPa. The computational domain features a buffer region upstream of the inlet and the nanochannel walls are assumed to be diffusively reflecting at the free stream temperature of 273 K. The flow analysis is based on the phase space distributions while macroscopic flow variables sampled in cells along the centerline are used to corroborate the microscopic analysis. The phase-space distributions show the formation of a disturbance region ahead of the inlet due to slow particles backstreaming through the inlet and the formation of a density enhancement with its maximum inside the nanochannel. Velocity phase-space distributions show a low-speed particle population generated inside the nanochannel due to wall collisions which is superimposed with the free stream high-speed population. The mean velocity decreases, while the number density increases in the buffer region. The translational temperature increases in the buffer region and reaches its maximum near the inlet. For AR = 10,100 nanochannels the gas reaches near equilibrium with the wall temperature. The heat transfer rate is largest near the inlet region where nonequilibrium effects are dominant. For Kn = 0.481,0.962, 4.81, vacuum back pressure, and AR=1, the nanoflow is supersonic throughout the nanochannel, while for AR=10, 100, the nanoflow is subsonic at the inlet and becomes sonic at the outlet. For Kn=0.962, AR=1, and imposed back pressure of 120 and 200 kPa, the nanoflow becomes subsonic at the outlet. For Kn=0.962 and AR=10, the outlet pressure nearly matches the imposed back pressure with the nanoflow becoming sonic at 40 kPa and subsonic at 100 kPa. Heat transfer rates at the inlet and mass flow rates at the outlet are in good agreement with those obtained from theoretical free-molecular models. The flows in these nanochannels share qualitatively characteristics found in microflows and continuum compressible flows in channels with friction and heat loss.
机译:使用三维方法研究了速度比(平均速度在最可能的速度下)为S = 2,5,10,压力为10.132 kPa的稀有氮气流进入高度为100、500和1000 nm的矩形纳米通道的过程,非结构化直接模拟蒙特卡罗方法。参数计算研究考虑Knudsen数Kn = 0.481,0.962,4.81的稀疏效应,(L / H)的纳米通道长径比从AR = 1,10,100的几何效应以及施加压力从0到0的反压效应200 kPa。计算域的特征是入口上游的缓冲区域,并且假定纳米通道壁在273 K的自由流温度下发生扩散反射。流动分析基于相空间分布,而沿中心线在单元中采样的宏观流动变量用于证实微观分析。相空间分布表明,由于缓慢的颗粒通过入口回流,在入口之前形成了干扰区域,并且形成了在纳米通道内部具有最大密度的密度增强。速度相空间分布显示由于壁碰撞而在纳米通道内部产生的低速粒子群,该粒子群与自由流高速粒子群叠加。平均速度降低,而缓冲区中的数字密度增加。平移温度在缓冲区域增加,并在入口附近达到最高。对于AR = 10,100纳米通道,气体与壁温达到接近平衡。在非平衡效应占主导的入口区域附近,传热速率最大。对于Kn = 0.481,0.962,4.81,真空背压,AR = 1,纳米流在整个纳米通道中都是超音速的,而对于AR = 10、100,纳米流在进口处是亚音速的,在出口处是声速的。对于Kn = 0.962,AR = 1,并施加120和200 kPa的背压,纳米流在出口处变为亚音速。对于Kn = 0.962和AR = 10,出口压力几乎与施加的背压匹配,纳米流在40 kPa时变为声波,在100 kPa时变为亚音速。入口的传热速率和出口的传质速率与从理论上的自由分子模型获得的传热速率非常一致。这些纳米通道中的流动具有定性特征,存在于微流动中,并且通道中的连续可压缩流动具有摩擦和热损失。

著录项

  • 作者

    Gatsonis Nikolaos A.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号