首页> 外文OA文献 >Stochastic programming models and methods for portfolio optimization and risk management
【2h】

Stochastic programming models and methods for portfolio optimization and risk management

机译:用于投资组合优化和风险管理的随机规划模型和方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This project is focused on stochastic models and methods and their application in portfolio optimization and risk management. In particular it involves development and analysis of novel numerical methods for solving these types of problem. First, we study new numerical methods for a general second order stochastic dominance model where the underlying functions are not necessarily linear.Specifically, we penalize the second order stochastic dominance constraints to the objective under Slater’s constraint qualification and then apply the well known stochastic approximation method and the level function methods to solve the penalized problem and present the corresponding convergence analysis. All methods are applied to some portfolio optimization problems, where the underlying functions are not necessarily linear all results suggests that the portfolio strategy generated by the second order stochastic dominance model outperform the strategy generated by the Markowitz model in a sense of having higher return and lower risk. Furthermore a nonlinear supply chain problem is considered, where the performance of the level function method is compared to the cutting plane method. The results suggests that the level function method is more efficient in a sense of having lower CPU time as well as being less sensitive to the problem size. This is followed by study of multivariate stochastic dominance constraints. We propose a penalization scheme for the multivariate stochastic dominance constraint and present the analysis regarding the Slater constraint qualification. The penalized problem is solved by the level function methods and a modified cutting plane method and compared to the cutting surface method proposed in [70] and the linearized method proposed in [4]. The convergence analysis regarding the proposed algorithms are presented. The proposed numerical schemes are applied to a generic budget allocation problem where it is shown that the proposed methods outperform the linearized method when the problem size is big. Moreover, a portfolio optimization problem is considered where it is shown that the a portfolio strategy generated by the multivariate second order stochastic dominance model outperform the portfolio strategy generated by the Markowitz model in sense of having higher return and lower risk. Also the performance of the algorithms is investigated with respect to the computation time and the problem size. It is shown that the level function method and the cutting plane method outperform the cutting surface method in a sense of both having lower CPU time as well as being less sensitive to the problem size. Finally, reward-risk analysis is studied as an alternative to stochastic dominance. Specifically, we study robust reward-risk ratio optimization. We propose two robust formulations, one based on mixture distribution, and the other based on the first order moment approach. We propose a sample average approximation formulation as well as a penalty scheme for the two robust formulations respectively and solve the latter with the level function method. The convergence analysis are presented and the proposed models are applied to Sortino ratio and some numerical test results are presented. The numerical results suggests that the robust formulation based on the first order moment results in the most conservative portfolio strategy compared to the mixture distribution model and the nominal model.
机译:该项目专注于随机模型和方法及其在投资组合优化和风险管理中的应用。特别是涉及解决这些类型问题的新型数值方法的开发和分析。首先,我们研究了基本函数不一定是线性的,一般的二阶随机优势模型的新数值方法;特别是,我们根据Slater约束条件对目标进行二阶随机优势约束的惩罚,然后应用众所周知的随机逼近方法并采用层次函数法求解惩罚问题,并给出相应的收敛性分析。所有方法都适用于某些投资组合优化问题,其中基础函数不一定是线性的,所有结果都表明,在具有较高收益和较低收益的意义上,二阶随机优势模型生成的证券投资策略优于Markowitz模型生成的策略。风险。此外,还考虑了非线性供应链问题,其中将水平函数方法的性能与切割平面方法的性能进行了比较。结果表明,在减少CPU时间以及对问题大小不太敏感的意义上,级别函数方法更为有效。接下来是对多元随机优势约束的研究。我们提出了一种针对多元随机优势约束的惩罚方案,并提出了有关斯莱特约束条件的分析。通过水平函数方法和改进的切割平面方法解决了惩罚问题,并将其与[70]中提出的切割表面方法和[4]中提出的线性化方法进行了比较。提出了关于所提出算法的收敛性分析。所提出的数值方案被应用于一般预算分配问题,其中表明,当问题规模较大时,所提出的方法优于线性方法。此外,考虑了一个投资组合优化问题,该研究表明,在具有更高的收益和更低的风险的意义上,多元二阶随机优势模型生成的投资组合策略优于Markowitz模型生成的投资组合策略。还针对计算时间和问题大小研究了算法的性能。可以看出,在具有较低的CPU时间以及对问题大小不太敏感的意义上,水平函数方法和切割平面方法优于切割表面方法。最后,对奖惩风险分析进行了研究,以替代随机优势。具体来说,我们研究了鲁棒的奖惩比优化。我们提出了两种稳健的公式,一种基于混合物分布,另一种基于一阶矩法。我们针对这两种鲁棒公式分别提出了样本平均逼近公式和惩罚方案,并使用水平函数法对其进行了求解。给出了收敛性分析,并将所提出的模型应用于Sortina比率,并给出了一些数值测试结果。数值结果表明,与混合分布模型和名义模型相比,基于一阶矩的稳健公式导致了最保守的投资组合策略。

著录项

  • 作者

    Meskarian Rudabeh;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号