首页> 外文OA文献 >A modal method for the simulation of nonlinear dynamical systems with application to bowed musical intruments
【2h】

A modal method for the simulation of nonlinear dynamical systems with application to bowed musical intruments

机译:一种模拟非线性动力系统的模态方法及其应用于鞠躬音乐仪器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bowed instruments are among the most exciting sound sources in the musical world,mostly because of the expressivity they allow to a musician or the variety of soundsthey can generate. From the physical point of view, the complex nature of thenonlinear sound generating mechanism – the friction between two surfaces – is no lessstimulating.In this thesis, a physical modelling computational method based on a modalapproach is developed to perform simulations of nonlinear dynamical systems withparticular application to friction-excited musical instruments. This computationalmethod is applied here to three types of systems: bowed strings as the violin or cello,bowed bars, such as the vibraphone or marimba, and bowed shells as the Tibetan bowlor the glass harmonica. The successful implementation of the method in theseinstruments is shown by comparison with measured results and with other simulationmethods. This approach is extended from systems with simple modal basis to morecomplex structures consisting of different sub-structures, which can also be describedby their own modal set.The extensive nonlinear numerical simulations described in this thesis, enabled someimportant contributions concerning the dynamics of these instruments: for the bowedstring an effective simulation of a realistic wolf-note on a cello was obtained, usingcomplex identified body modal data, showing the beating dependence of the wolfnotewith bowing velocity and applied bow force, with good qualitative agreementwith experimental results; for bowed bars the simulated vibratory regimes emergingfrom different playing conditions is mapped; for bowed Tibetan bowls, the essentialintroduction of orthogonal mode pairs of the same family with radial and tangentialcomponents characteristic of axi-symmetrical structures is performed, enabling animportant clarification on the beating phenomena arising from the rotating behaviourof oscillating modes. Furthermore, a linearized approach to the nonlinear problem isimplemented and the results compared with the nonlinear numerical simulations.Animations and sounds have been produced which enable a good interpretation ofthe results obtained and understanding of the physical phenomena occurring in thesesystem.
机译:弓弦乐器是音乐界最令人兴奋的声音来源之一,主要是因为它们使音乐家具有表现力,或者可以产生各种声音。从物理的角度来看,非线性发声机制的复杂性(两个表面之间的摩擦)是无可厚非的。本文提出了一种基于模态方法的物理建模计算方法,以进行非线性动力学系统的特殊应用仿真。摩擦刺激的乐器。这种计算方法在这里适用于三种类型的系统:弓弦(如小提琴或大提琴),弓弦(如电颤琴或马林巴琴)以及弓形贝壳(如藏族圆顶琴或玻璃口琴)。通过与测量结果和其他模拟方法的比较,表明了该方法在这些仪器中的成功实施。这种方法从具有简单模态基础的系统扩展到了由不同子结构组成的更复杂结构,也可以通过它们自己的模态集来描述。本文所描述的广泛的非线性数值模拟为这些仪器的动力学做出了重要贡献:对于弓弦,使用复杂的识别人体模态数据,获得了在大提琴上逼真的狼音的有效模拟,显示了狼音在弯曲速度和施加弓力的情况下的跳动依赖性,与实验结果具有很好的定性一致性;对于弓形杆,绘制了从不同演奏环境中出现的模拟振动状态;对于藏族弓形碗,进行了具有轴对称结构特征的径向和切向分量的同族正交模式对的基本介绍,从而使得对振荡模式旋转行为所产生的跳动现象的理解变得十分重要。此外,实现了非线性问题的线性化方法,并将结果与​​非线性数值模拟进行了比较。制作了动画和声音,可以很好地解释所获得的结果并了解这些系统中发生的物理现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号