首页> 外文OA文献 >Comparison of lattice structures for air-guiding photonic band gap fibres
【2h】

Comparison of lattice structures for air-guiding photonic band gap fibres

机译:导光光子带隙光纤晶格结构的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The optical version of a crystal, namely the photonic crystal, is a periodic distribution of a dielectric structure with a period on the order of an optical wavelength. According to Maxwell's equations, under certain circumstances a photonic band gap can appear, and therefore the propagation of light with particular frequencies is completely forbidden . Photonic crystal fibres (PCF) composed of silica and air, have become very attractive for many new applications due to their special features such as large nonlinearity and adjustable dispersion and wave guidance by the photonic bandgap effect. If in such fibre the photonic band gap expands above the air line, k = beta, guiding of light in an air core can be possible. Dispersion and polarization properties of solid-core square photonic band gap fibres have been extensively studied . However, the possibility of air guiding in square lattice photonic crystals fibres, to the best of our knowledge, has not been studied. The basic square structure, a square arrangement of circular holes, presents very narrow gaps crossing the air line. Here, we study an arrangement of octagonal holes in a square pattern, see Fig.1. This structure presents wider bandgaps than the basic square lattice since isolated high-index regions a! re con nected by very narrow veins. PBG regions extending above the air line begin to appear for air filling factors around 65%. For low air filling factors, 70 to 80%, the relative width of the gap crossing the air line is between 17 and 28% while triangular structures present gaps with relative widths of less than 13% for the same range of air filling factors. Numerical results demonstrate that such band gaps can be used to guide light in a properly chosen air core design.
机译:晶体的光学形式,即光子晶体,是介电结构的周期性分布,其周期约为光学波长。根据麦克斯韦方程,在某些情况下会出现光子带隙,因此完全禁止特定频率的光的传播。由硅石和空气组成的光子晶体光纤(PCF)由于其特殊的特性(例如大的非线性和可调节的色散以及由光子带隙效应产生的波导)而在许多新应用中变得非常有吸引力。如果在这样的光纤中,光子带隙在空气线上方扩展,则k = beta,则可以在空芯中导光。实心方形光子带隙光纤的色散和偏振特性已得到广泛研究。然而,就我们所知,方格光子晶体纤维中导风的可能性尚未得到研究。基本的正方形结构是圆形孔的正方形排列,在穿过空气管线的间隙非常狭窄。在这里,我们研究正方形图案中八边形孔的排列,见图1。由于隔离了高折射率区域,该结构比基本方格呈现出更宽的带隙。由非常狭窄的静脉连接。空气填充上方的PBG区域开始出现,空气填充系数约为65%。对于70%到80%的低空气填充系数,穿过空气管线的间隙的相对宽度在17%和28%之间,而对于相同范围的空气填充系数,三角形结构呈现的间隙的相对宽度小于13%。数值结果表明,这种带隙可用于在适当选择的空芯设计中引导光。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号