首页> 外文OA文献 >One-class Machine Learning Approach for fMRI Analysis
【2h】

One-class Machine Learning Approach for fMRI Analysis

机译:用于fmRI分析的一流机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

One-Class Machine Learning techniques (i.e. "bottleneck" neural networks and one-class support vector machines (SVM)) are applied to classify whether a subject is performing a task or not by looking solely at the raw fMRI slices of his brain. "One-class" means that during training the system only has access to positive (i.e. task performing) examples. "Two-class" means it has access to negative examples as well. Successful classification of data by a system trained under either of the one-class systems was accomplished at close to the 60% level. (In contrast, an implementation of a standard two class SVM succeeds at around the 70% level.) These results were stable over repeated experiments and for both motor and visual tasks. Since the one-class neural network technique is naturally related to dimension reduction, it is possible that this mechanism may also be used for feature selection.
机译:一类机器学习技术(即“瓶颈”神经网络和一类支持向量机(SVM))用于通过仅查看大脑的原始fMRI切片来对受试者是否执行任务进行分类。 “一等”表示在培训期间,系统只能访问正面(即执行任务)示例。 “两类”意味着它也可以使用负面的例子。通过在任一一类系统下训练的系统对数据的成功分类,已接近60%的水平。 (相比之下,标准的两级SVM的实现在70%左右成功。)这些结果在重复的实验以及运动和视觉任务中都是稳定的。由于一类神经网络技术与降维自然相关,因此有可能将该机制也用于特征选择。

著录项

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号