首页> 外文OA文献 >Contention-based learning MAC protocol for broadcast Vehicle-to-Vehicle Communication
【2h】

Contention-based learning MAC protocol for broadcast Vehicle-to-Vehicle Communication

机译:基于竞争的学习maC协议,用于广播车对车通信

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vehicle-to-Vehicle Communication (V2V) is an upcoming technology that can enable safer, more efficient transportation via wireless connectivity among moving cars. The key enabling technology, specifying the physical and medium access control (MAC) layers of the V2V stack is IEEE 802.11p, which belongs in the IEEE 802.11 family of protocols originally designed for use in WLANs. V2V networks are formed on an ad hoc basis from vehicular stations that rely on the delivery of broadcast transmissions for their envisioned services and applications. Broadcast is inherently more sensitive to channel contention than unicast due to the MAC protocol’s inability to adapt to increased network traffic and colliding packets never being detected or recovered. This paper addresses this inherent scalability problem of the IEEE 802.11p MAC protocol. The density of the network can range from being very sparse to hundreds of stations contenting for access to the channel. A suitable MAC needs to offer the capacity for V2V exchanges even in such dense topologies which will be common in urban networks. We present a modified version of the IEEE 802.11p MAC based on Reinforcement Learning (RL), aiming to reduce the packet collision probability and bandwidth wastage. Implementation details regarding both the learning algorithm tuning and the networking side are provided. We also present simulation results regarding achieved message packet delivery and possible delay overhead of this solution. Our solution shows up to 70% increase in throughput compared to the standard IEEE 802.11p as the network traffic increases, while maintaining the transmission latency within the acceptable levels.
机译:车对车通信(V2V)是一项即将到来的技术,可以通过行驶中的汽车之间的无线连接实现更安全,更高效的运输。指定V2V堆栈的物理和介质访问控制(MAC)层的关键支持技术是IEEE 802.11p,它属于最初设计用于WLAN的IEEE 802.11协议系列。 V2V网络是临时建立的,这些车载站依赖于广播传输来实现其预期的服务和应用。由于MAC协议无法适应不断增长的网络流量以及从未检测到或无法恢复的冲突数据包,因此,广播本质上比单播对信道竞争更敏感。本文解决了IEEE 802.11p MAC协议固有的可伸缩性问题。网络的密度可以从非常稀疏到满足访问信道的数百个站点。即使在城市网络中常见的密集拓扑中,合适的MAC也需要为V2V交换提供容量。我们提出了基于强化学习(RL)的IEEE 802.11p MAC的修改版本,旨在降低数据包冲突概率和带宽浪费。提供了有关学习算法调整和联网方面的实现细节。我们还提供了有关已实现的消息包传递和此解决方案可能的延迟开销的仿真结果。与标准IEEE 802.11p相比,随着网络流量的增加,我们的解决方案显示吞吐量提高了70%,同时将传输延迟保持在可接受的水平内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号