首页> 外文OA文献 >Mapping functional equations to the topology of Networks yields a natural interpolation method for time series data
【2h】

Mapping functional equations to the topology of Networks yields a natural interpolation method for time series data

机译:将函数方程映射到网络的拓扑结构产生了用于时间序列数据的自然插值方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Typically machine learning methods attempt to construct from some limited amount of data a more general model which extends the range of application beyond the available examples. Many methods specifically attempt to be purely data driven, assuming, that everything is contained in the data. On the other hand, there often exists additional abstract knowledge about the system to be modeled, but there is no obvious method how to combine these two domains. We propose the calculus of functional equations as an appropriate language to describe many relations in a way that is more general than a typical parameterized model, but allows to be more specific about the setting than using an universal approximation scheme like neural networks. Symmetries, conservation laws, and concepts like determinism can be expressed this way. Many of these functional equations can be translated into specific network structures and topologies, which will constrain the possible input-output relations of the network to the solution space of the equations. This results in less data that is necessary for training and may lead to more general results, too, that can be derived from the model. As an example, a natural method for inter- or extrapolation of time series is derived, which does not use any fixed interpolation scheme but is automatically constructed from the knowledge/assumption that the data series is generated by an underlying deterministic dynamical system.
机译:通常,机器学习方法试图从一些有限的数据中构建更通用的模型,从而将应用范围扩展到可用示例之外。假设所有内容都包含在数据中,则许多方法专门尝试纯粹由数据驱动。另一方面,通常存在关于要建模的系统的其他抽象知识,但是没有明显的方法来组合这两个域。我们建议将函数方程的演算作为一种合适的语言来描述多种关系,这种方式比典型的参数化模型更通用,但与使用神经网络这样的通用逼近方案相比,它可以更详细地说明设置。对称性,守恒定律和确定性之类的概念可以用这种方式表达。这些函数方程中的许多函数都可以转换为特定的网络结构和拓扑,这将把网络可能的输入输出关系限制在方程的解空间内。这样会减少训练所需的数据,并可能导致可以从模型得出的更一般的结果。例如,推导了一种用于时间序列内插或外推的自然方法,该方法不使用任何固定的内插方案,而是根据对数据序列由基础确定性动力学系统生成的知识/假设自动构建的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号