首页> 外文OA文献 >Use of a Bayesian maximum-likelihood classifier to generate training data for brain–machine interfaces
【2h】

Use of a Bayesian maximum-likelihood classifier to generate training data for brain–machine interfaces

机译:使用贝叶斯最大似然分类器来生成脑机接口的训练数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Brain–machine interface decoding algorithms need to be predicated on assumptions that are easily met outside of an experimental setting to enable a practical clinical device. Given present technological limitations, there is a need for decoding algorithms which (a) are not dependent upon a large number of neurons for control, (b) are adaptable to alternative sources of neuronal input such as local field potentials (LFPs), and (c) require only marginal training data for daily calibrations. Moreover, practical algorithms must recognize when the user is not intending to generate a control output and eliminate poor training data. In this paper, we introduce and evaluate a Bayesian maximum-likelihood estimation strategy to address the issues of isolating quality training data and self-paced control. Six animal subjects demonstrate that a multiple state classification task, loosely based on the standard center-out task, can be accomplished with fewer than five engaged neurons while requiring less than ten trials for algorithm training. In addition, untrained animals quickly obtained accurate device control, utilizing LFPs as well as neurons in cingulate cortex, two non-traditional neural inputs.
机译:脑机接口解码算法需要以在实验环境之外容易满足的假设为基础,以实现实用的临床设备。鉴于目前的技术局限性,需要一种解码算法,其(a)不依赖于大量神经元进行控制,(b)适用于神经元输入的替代来源,例如局部场电势(LFP),并且( c)仅需要边际训练数据即可进行每日校准。此外,实用算法必须识别用户何时不打算生成控制输出并消除不良的训练数据。在本文中,我们介绍并评估了贝叶斯最大似然估计策略,以解决隔离质量训练数据和自定进度控制的问题。六位动物受试者证明,基于标准中心向外任务的多状态分类任务可以用少于五个参与的神经元来完成,而算法训练需要少于十个试验。此外,未经训练的动物利用LFP和扣带回皮层中的神经元(两个非传统的神经输入)迅速获得了精确的设备控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号