首页> 外文OA文献 >An Object-Based Approach for Quantification of GCM Biases in the Simulation of Orographic Precipitation.
【2h】

An Object-Based Approach for Quantification of GCM Biases in the Simulation of Orographic Precipitation.

机译:基于对象的地形降水模拟中GCm偏差量化方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An object-based evaluation method to identify and quantify biases of General Circulation Models (GCMs) is introduced. The focus is on how orographic precipitation is simulated by the Eulerian Spectral Transform and the finite volume (FV) dynamical cores within the National Center of Atmospheric Research (NCAR) Community Earth System Model (CESM) with its Community Atmosphere Model (CAM). The “local” biases introduced by dynamical cores and how they evolve with varying model resolution are quantified by looking at simulated precipitation over the Coast Range and the Sierra Nevada mountains on the West Coast of North America. The first step of the object-based method involves identification of orographic precipitation features (study features) simulated differently by the CAM Eulerian Spectral Transform and CAM FV dynamical cores. We examined Atmospheric Model Intercomparison Project (AMIP) model simulations together with Global Precipitation Climatology Center (GPCC) observations to select the study features. CAM FV resembled the observed spatial pattern of precipitation better than the CAM Eulerian Spectral Transform scheme. As the second step of the method, idealized experiments were conducted running the Community Atmosphere Model (CAM) coupled with a simplified physics parameterization to understand the causes of this difference between the CAM FV and the CAM Eulerian Spectral Transform dynamical cores. Three different mechanisms of precipitation were isolated due to (a) stable upslope ascent, (b) local surface fluxes and moisture transport, and (c) resolved downstream waves. The precipitation features related to these mechanisms were isolated as “objects” using pattern recognition methods such as clustering and classification trees. The CAM Eulerian Spectral Transform model simulations become more unrealistic as the resolvable scales of the simulated precipitation gets smaller, and the amount of simulated precipitation gets larger. The reasons of this problematic representation of orographic precipitation by the CAM Eulerian Spectral Transform dynamical core (i.e. bias) can be summarized in three categories: (a) bias due to spectral filtering of the topography, (b) bias in small-scale phenomena due to spectral transform method, (c) grid scale variability (noise) due to spectral transform method. The results also indicated stronger sensitivity of the CAM Eulerian Spectral Transform dynamical core to model resolution.
机译:介绍了一种基于对象的评估方法,以识别和量化通用流通模型(GCM)的偏差。重点是如何通过欧拉光谱变换和国家大气研究中心(NCAR)社区地球系统模型(CESM)及其社区大气模型(CAM)内的有限体积(FV)动力核心模拟地形降水。通过查看北美西海岸的海岸山脉和内华达山脉上的模拟降水,可以量化动力核心引入的“局部”偏差及其在不同模型分辨率下的演化方式。基于对象的方法的第一步涉及识别由CAM欧拉光谱变换和CAM FV动力核心不同模拟的地形降水特征(研究特征)。我们研究了大气模型比较项目(AMIP)模型模拟​​以及全球降水气候中心(GPCC)的观测资料,以选择研究特征。 CAM FV比CAM Eulerian Spectral Transform方案更好地类似于观测到的降水模式。作为该方法的第二步,通过运行社区大气模型(CAM)和简化的物理参数设置进行了理想的实验,以了解CAM FV和CAM Eulerian光谱变换动态核之间差异的原因。由于(a)稳定的上坡上升,(b)局部表面通量和水分输送以及(c)解析的下游波浪,分离了三种不同的降水机制。使用模式识别方法(例如聚类和分类树)将与这些机制相关的降水特征隔离为“对象”。随着模拟降水的可分辨尺度变小,模拟降水量变大,CAM Eulerian光谱变换模型模拟变得更加不现实。 CAM Eulerian谱变换动态核心对地形降水进行有问题的表示的原因(即偏差)可以归纳为三类:(a)由于地形光谱过滤而产生的偏差,(b)由于小规模现象引起的偏差(c)归因于频谱变换方法的网格规模可变性(噪声)。结果还表明,CAM Eulerian光谱变换动态核对模型分辨率的敏感性更高。

著录项

  • 作者

    Yorgun Muharrem Soner;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号