首页> 外文OA文献 >Managing vessel arrival uncertainty in container terminals: a machine learning approach
【2h】

Managing vessel arrival uncertainty in container terminals: a machine learning approach

机译:管理集装箱码头的船舶到达不确定性:机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A container terminal is a complex system where a broad range of operations areudcarried out involving a wide array of resources that need to interact over a 24 hourudoperating cycle. Since the various activities are mutually related to each other, there isuda need not only to maximise the efficiency of each one, but also to ensure properudcoordination, hence to solve integrated decision-making problems. Several factors canudaffect the quality of the services provided and the overall efficiency. Vessel arrivaluduncertainty further complicates the task of the planners and, as a result, of theudeffectiveness of the planning itself, in particular at the operational level. Each arrivaludproduces high peak loads for other terminal activities, as well as for the supportingudarrival activities (pilotage, towage, etc.) and hinterland transportation (waiting,udcongestion etc.). Deviating arrivals only worsen this peak load.udOn a daily level, the actual time of arrival of the vessels often deviates from theudscheduled time. Despite contractual obligations to notify the Estimated Time ofudArrival (ETA) at least 24 hours before the arrival, ship operators often have to adaptudand update the latest ETA due to unexpected circumstances. This aspect results in audlast-minute change of plans in terminal operations resulting in higher costs. In fact, theudability to predict the actual time of a vessel’s arrival in a port 24 hours in advance isudfundamental for the related planning activities for which the decision-makingudprocesses need to be constantly adapted and updated. Moreover, disruptions inudcontainer flows and operations caused by vessel arrival uncertainty can have cascadeudeffects within the overall supply chain and network within which the port is part.udAlthough vessel arrival uncertainty in ports is a well-known problem for the scientificudcommunity, the literature review highlights that in the maritime sector the specificudinstruments for dealing with this problem are extremely limited.udThe absence of a reference model that specifies the relationship between vessel arrivaluduncertainty and the involved variables resulted in the application of a specific machineudlearning approach within the Knowledge Discovery in Database process. ThisudVudapproach, that abandons all prior assumptions about data distribution shape, is basedudon the self-learning concept according to which the relation between an outcomeudvariable Y and the set of predictors X is directly identified from the historical collecteduddata.udThe approach has been validated thanks to two different case studies: the containerudterminal of Cagliari, located in the Mediterranean basin, and one of the main containerudterminals of Antwerp, located at the North Sea.udDepending on the framework and planning purposes several estimates can provideuduseful information on vessel arrivals. Sometimes, it can be useful for planners to inferuda quantitative estimate of the delay/advance in minutes, sometimes it may be useful toudhave a qualitative estimate, even only knowing whether or not an incoming vessel isudlikely to arrive before or after the scheduled ETA. For this reason a two-stepudinstrument is proposed is made up of two different modules.udThe fitted algorithmic models used to obtain predictions are Logistic Regression,udCART (Classification and Regression Trees) and Random Forest. All the proposed models are able to learn from experience, following the well-known Data Mining paradigm “learning from data”. From a practical point of view, the probability, associated to the continuous estimation, of specifically identifying the work-shift of the incoming vessel is calculated. In all predictions Random Forest algorithms still show the best performance. This aspect can help planners, in the daily strategy decision making process, in order to improve the use of the human, mechanical and spatial resources required for handling operations. This could maximise terminal efficiency and minimise terminal costs, hence improving terminal competitiveness. Moreover, the interpretation of the discovered knowledge, made it possible to evaluateudthe most discriminating variables of the analysis, even thanks to graphical visualisation of the Importance-plots.ud
机译:集装箱码头是一个复杂的系统,其中需要进行广泛的操作,涉及需要在24小时的非操作周期中进行交互的各种资源。由于各种活动是相互关联的,因此不仅需要使每个活动的效率最大化,而且还需要确保适当的协调,从而解决综合决策问题。有几个因素可以影响提供的服务的质量和整体效率。船只到达不确定性进一步使计划者的任务变得复杂,并且因此使计划本身的无效性尤其是在操作层面变得更加复杂。每次到达 ud都会为其他候机楼活动以及辅助 udarrival活动(领航,拖船等)和腹地运输(等待, ud拥堵等)产生高峰值负荷。偏离的到达只会加剧此峰值负荷。在每天的水平上,船只的实际到达时间通常会偏离计划的时间。尽管有合同义务至少要在到达前24小时通知预计到达时间(ETA),但由于意外情况,船舶经营者常常不得不适应并更新最新的预计到达时间。这方面导致终端操作计划的最后更改,从而导致更高的成本。实际上,对于需要提前适应和更新决策程序的相关计划活动,预测船舶提前24小时到达港口实际时间的能力是根本的。此外,由船只到达不确定性引起的 udcontainer流量和操作中断可能会在港口所在的整个供应链和网络内产生级联 udef影响。 ud尽管港口的船只到达不确定性是科学界众所周知的问题, udcommunity,文献综述强调指出,在海事部门中,用于处理此问题的特定仪器非常有限。 ud缺少参考模型,该模型指定了船舶到达,不确定性与所涉及变量之间的关系,导致应用了数据库知识发现过程中的特定机器学习方法。这个 udV udapproach放弃了所有关于数据分布形状的先前假设,基于 udf自学习概念,根据该概念,可以直接从历史收集的数据中识别出结果 udable Y与预测变量X的集合之间的关系 uddata。 ud该方法已通过两个不同的案例研究得到了验证:位于地中海盆地的卡利亚里集装箱 udterminal和位于北海的安特卫普的主要集装箱 udterminal之一。 ud取决于框架和计划目的,一些估算可以提供有关船舶抵港的有用信息。有时,对于计划人员来说,以分钟为单位的延迟/提前量的定量估计可能会有用,有时,对定性的估计也可能是有用的,即使仅知道传入的船只是否很可能在到达或到达之前也可能有用。在预定的预计到达时间之后。因此,提出了由两个不同模块组成的两步​​ udinstrument。 ud用于获得预测的拟合算法模型是Logistic回归, udCART(分类树和回归树)和随机森林。遵循著名的数据挖掘范例“从数据中学习”,所有提出的模型都可以从经验中学习。从实际的角度出发,计算出与连续估计相关的概率,该概率专门确定了进入船只的工作班次。在所有预测中,随机森林算法仍然显示出最佳性能。这方面可以帮助规划人员在日常策略决策过程中,改善对操作所需的人力,机械和空间资源的使用。这可以最大化终端效率并最小化终端成本,从而提高终端竞争力。此外,对所发现知识的解释,使得即使有重要图形的图形化可视化,也可以评估分析最明显的变量。

著录项

  • 作者

    Pani Claudia;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号