首页> 外文OA文献 >Prediction of late/early arrivals in container terminals - A qualitative approach
【2h】

Prediction of late/early arrivals in container terminals - A qualitative approach

机译:预测集装箱码头的迟到/提早到达-定性方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vessel arrival uncertainty in ports has become a very common problem worldwide. Although ship operators have to notify the Estimated Time of Arrival (ETA) at predetermined time intervals, they frequently have to update the latest ETA due to unforeseen circumstances. This causes a series of inconveniences that often impact on the efficiency of terminal operations, especially in the daily planning scenario. Thus, for our study we adopted a machine learning approach in order to provide a qualitative estimate of the vessel delay/advance and to help mitigate the consequences of late/early arrivals in port. Using data on delays/advances at the individual vessel level, a comparative study between two transshipment container terminals is presented and the performance of three algorithmic models is evaluated. Results of the research indicate that when the distribution of the outcome is bimodal the performance of the discrete models is highly relevant for acquiring data characteristics. Therefore, the models are not flexible in representing data when the outcome distribution exhibits unimodal behavior. Moreover, graphical visualisation of the importance-plots made it possible to underline the most significant variables which might explain vessel arrival uncertainty at the two European ports.
机译:港口中船只到达的不确定性已成为世界范围内非常普遍的问题。尽管船舶运营商必须在预定的时间间隔内通知预计到达时间(ETA),但由于不可预见的情况,他们经常不得不更新最新的预计到达时间。这会带来一系列不便,这些不便通常会影响码头运营的效率,尤其是在日常计划中。因此,在我们的研究中,我们采用了机器学习方法,以便对船舶的延误/前进进行定性估计,并帮助减轻港口迟到/早到的后果。利用各个船级的延迟/提前数据,提出了两个转运集装箱码头之间的比较研究,并评估了三种算法模型的性能。研究结果表明,当结果的分布为双峰时,离散模型的性能与获取数据特征高度相关。因此,当结果分布表现出单峰行为时,模型在表示数据时并不灵活。此外,重要性图的图形化可视化使强调最重要的变量成为可能,这些变量可能解释了两个欧洲港口船只到达的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号