首页> 外文OA文献 >A family of functional inequalities: Lojasiewicz inequalities and displacement convex functions
【2h】

A family of functional inequalities: Lojasiewicz inequalities and displacement convex functions

机译:函数不等式族:Lojasiewicz不等式和位移凸函数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

For displacement convex functionals in the probability space equipped with the Monge-Kantorovich metric we prove the equivalence between the gradient and functional type Lojasiewicz inequalities. We also discuss the more general case of $\lambda$-convex functions and we provide a general convergence theorem for the corresponding gradient dynamics. Specialising our results to the Boltzmann entropy, we recover Otto-Villani's theorem asserting the equivalence between logarithmic Sobolev and Talagrand's inequalities. The choice of power-type entropies shows a new equivalence between Gagliardo-Nirenberg inequality and a nonlinear Talagrand inequality. Some nonconvex results and other types of equivalences are discussed.
机译:对于配备Monge-Kantorovich度量的概率空间中的凸凸泛函,我们证明了梯度与泛函型Lojasiewicz不等式之间的等价性。我们还将讨论$ \ lambda $-凸函数的更一般情况,并为相应的梯度动力学提供一个通用的收敛定理。将我们的结果专门用于玻耳兹曼熵,我们恢复了奥托-维拉尼定理,该定理断言对数Sobolev和Talagrand不等式之间的等价性。幂型熵的选择显示了Gagliardo-Nirenberg不等式和非线性Talagrand不等式之间的新等价关系。讨论了一些非凸结果和其他等价形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号