首页> 外文OA文献 >Ultrasonic Reflectometry for Monitoring the Effect of Pressure on Sludge Fouling of MF Membranes
【2h】

Ultrasonic Reflectometry for Monitoring the Effect of Pressure on Sludge Fouling of MF Membranes

机译:超声波反射仪监测压力对mF膜污泥污染的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Membrane fouling remains the key limitation for the widespread use of membrane bioreactors (MBR) for wastewater treatment. This constraint has led to an increasing number of studies that examine the influence of various operational parameters and physicochemical properties on fouling layer formation and characteristics. In other membrane applications real-time monitoring has proven to be useful by providing a more quantitative characterization of fouling layer formation [1]. One such technique, ultrasonic reflectometry (UR), has been successfully used to detect fouling formed by a wide range of foulants including calcium sulfate [2], yeast [3], proteins [4] and biofilm [5]. Based upon the well-documented advantages of UR measurement [6], the objectives of this study were to utilize UR for real-time detection of fouling layers formed by municipal activated sludge and for quantification of the effect of pressure on the fouling layer structure.The ability of UR to detect and monitor sludge fouling was studied in a series of replicated experiments of 15, 30 and 60-min duration that used commercial microfiltration (MF) membranes at a transmembrane pressure of 15 kPa. By analyzing the peak of the ultrasonic signal reflected from the membrane surface, it was observed that ultrasonic amplitude was reduced as a function of fouling intensity. Findings showed that there was a statistically significant correlation between the reduction of ultrasonic amplitude and the degree of fouling. This association was validated by real-time flux measurements as well as post-mortem characterization metrics that included optical image analysis, gravimetric measurement and membrane protein concentration. The reduction of the reflected ultrasonic amplitude signal is due to the presence of a hydrated fouling layer, which serves as an impedance matching layer with the water-swollen membrane.Furthermore, the effect of pressure on membrane performance and ultrasonic amplitude was studied in 5-h filtration experiments conducted at two pressures: 15 kPa and 25 kPa. Results showed that there is higher filtration resistance but less ultrasonic amplitude reduction by the fouling layer formed at higher pressure. This somewhat counterintuitive finding is explained by compression of the fouling layer, i.e., a more compressed (denser) and less hydrated layer provides less attenuation and consequently a higher signal amplitude as compared to a water-swollen layer at lower pressure.References1. V. Chen, H. Li, A.G. Fane, J. Membr. Sci, 241, 23-44 (2004).2. X.Y. Lu, E. Kujundzic, G. Mizrahi, J. Wang, K. Cobry, M. Peterson, J. Gilron, A. Greenberg, J. Membr Sci., 419, 20-32 (2012).3. X.H. Li, J.X. Li, J. Wang, H.W. Zhang, Y.D. Pan, J. Membr. Sci., 411, 137-145 (2012).4. E. Kujundzic, A.R. Greenberg, R. Fong, B. Moore, D. Kujundzic, M. Hernandez, J. Membr. Sci., 349, 44-55 (2010).5. E. Kujundzic, A.C. Fonseca, E.A. Evans, M. Peterson, A.R. Greenberg, M. Hernandez, J. Microbiol. Methods, 68, 458-467 (2007).6. E. Kujundzic, A.R. Greenberg and M. Peterson, Desalination and Water Treatment, DOI: 10.1080/19443994.2013.874132 (2014).
机译:膜污染仍然是膜生物反应器(MBR)广泛用于废水处理的关键限制。这种限制导致越来越多的研究检查各种操作参数和理化性质对结垢层形成和特性的影响。在其他膜应用中,通过提供更定量的结垢层形成特征,实时监测已被证明是有用的[1]。一种这样的技术,超声反射法(UR),已成功用于检测由多种污垢形成的污垢,包括硫酸钙[2],酵母[3],蛋白质[4]和生物膜[5]。基于已证明的UR测量优势[6],本研究的目的是利用UR实时检测市政活性污泥形成的污垢层,并量化压力对污垢层结构的影响。在15、30和60分钟持续时间的一系列重复实验中研究了UR检测和监测污泥结垢的能力,这些实验在15 kPa的跨膜压力下使用了商用微滤(MF)膜。通过分析从膜表面反射的超声波信号的峰值,可以观察到超声波振幅随着结垢强度的降低而降低。研究结果表明,超声振幅的降低与结垢程度之间存在统计学上的显着相关性。通过实时通量测量以及验光后表征指标(包括光学图像分析,重量测量和膜蛋白浓度)验证了这种关联。反射的超声振幅信号的减小是由于存在水合结垢层,该结垢层与水溶胀的膜作为阻抗匹配层;此外,在5中研究了压力对膜性能和超声振幅的影响。在两个压力下进行h过滤实验:15 kPa和25 kPa。结果表明,在较高压力下形成的结垢层具有较高的过滤阻力,但超声振幅降低较小。与污垢层的压缩相比,可以解释这种有点违反直觉的发现,即与较低压力下的水肿层相比,压缩程度更高(浓密)和水合程度较小的层提供的衰减较小,因此信号幅度较高。 V. Chen,H. Li,A.G. Fane,J.Membr。 Sci,241,23-44(2004).2。 X.Y. Lu,E.Kujundzic,G.Mizrahi,J.Wang,K.Cobry,M.Peterson,J.Gilron,A.Greenberg,J.Membr Sci。,419,20-32(2012).3。 X.H.李建新李建旺张永德潘,J。Membr。 Sci。,411,137-145(2012).4。 E.Kujundzic,A.R. Greenberg,R。Fong,B。Moore,D。Kujundzic,M。Hernandez,J。Membr。 Sci。,349,44-55(2010).5。 E.Kujundzic,A.C. Fonseca,E.A.埃文斯(Evans),彼得森(A.R.)格林伯格,M。埃尔南德斯,微生物学杂志。方法,68,458-467(2007).6。 E.Kujundzic,A.R. Greenberg和M.Peterson,《海水淡化和水处理》,DOI:10.1080 / 19443994.2013.874132(2014)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号