首页> 外文期刊>Sensors and Actuators. B, Chemical >Use of capacitive microsensors and ultrasonic time-domain reflectometry for in-situ quantification of concentration polarization and membrane fouling in pressure-driven membrane filtration
【24h】

Use of capacitive microsensors and ultrasonic time-domain reflectometry for in-situ quantification of concentration polarization and membrane fouling in pressure-driven membrane filtration

机译:使用电容式微传感器和超声时域反射仪对压力驱动膜过滤中的浓度极化和膜污染进行原位定量

获取原文
获取原文并翻译 | 示例
           

摘要

In membrane separation processes, the presence of the concentration polarization boundary layer (CPBL) often leads to a decline in the permeate flux and an increased risk of membrane fouling. Although the study of membrane fouling has benefited from the recent development of real-time, non-invasive acoustic measurements of the fouling process under realistic conditions, measurement of concentration polarization is still difficult and rather limited. This paper describes the development of interdigitated capacitive microsensors for real-time in-situ monitoring of CPBL growth in a cross-flow nanofiltration membrane module using calcium sulfate (CaSO_4) solution as the feed. The developed capacitive sensors respond to changes in solute concentration as a function of distance from the membrane surface. Detection capability was determined in a series of comprehensive experiments with systematic changes in feed concentration and module operating parameters including upstream pressure, flow rate, and feed composition. The specially designed microscale capacitor assembly provides a unique capability for real-time characterization of the transient and steady-state concentration boundary layer polarization behavior. The capacitive microsensor concentration polarization measurements were corroborated via independent membrane morphological analysis and standard performance metrics. The experimental data were in excellent qualitative agreement with theoretical predictions from a mathematical model of concentration polarization behavior. In addition, the use of microcapacitor sensors in combination with ultrasonic time-domain reflectometry, enabled real-time observation of the development of scaling from the initiation of concentration polarization through the onset of membrane fouling. These results clearly demonstrate the advantages of a multisensor approach to the measurement of membrane phenomena, and provide a basis for the development of "smart" membranes.
机译:在膜分离过程中,浓差极化边界层(CPBL)的存在通常会导致渗透通量下降和膜污染的风险增加。尽管膜结垢的研究得益于现实条件下结垢过程的实时,非侵入性声学测量的最新发展,但浓度极化的测量仍然很困难并且相当局限。本文介绍了交叉指型电容式微传感器的开发,该传感器用于实时原位监测以硫酸钙(CaSO_4)为原料的错流纳滤膜组件中CPBL的生长。开发的电容式传感器响应溶质浓度的变化,该变化是与膜表面距离的函数。检测能力是通过一系列综合实验确定的,其中进料浓度和模块操作参数(包括上游压力,流速和进料组成)的系统变化。经过特殊设计的微型电容器组件为瞬态和稳态浓度边界层极化行为的实时表征提供了独特的功能。电容式微传感器浓度极化测量通过独立的膜形态分析和标准性能指标得到证实。实验数据与浓差极化行为数学模型的理论预测在定性上非常吻合。此外,将微电容器传感器与超声时域反射仪结合使用,可以实时观察从浓度极化的开始到膜污染开始的水垢形成过程。这些结果清楚地证明了采用多传感器方法测量膜现象的优势,并为开发“智能”膜提供了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号