首页> 外文OA文献 >Transform-based methods for stereo matching and dense depth estimation
【2h】

Transform-based methods for stereo matching and dense depth estimation

机译:基于变换的立体匹配和密集深度估计方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stereo matching is a passive method for estimating depth of a scene from two views from different perspectives. Parallax creates a disparity between the relative positions of scene points on the imaging planes depending on the distance of the points. The principle of stereo matching is to extract those disparities by finding the corresponding points between the images. Although stereo matching has been extensively studied, the existing solutions are still compromises between computational load and achieved quality. In this thesis, advances are made on both fronts. At the core of the matching algorithm is the similarity measure, which directly determines how well correspondences are found and how reliable they are. Traditionally, matching has been done in spatial domain using pixel differences such as sum of absolute differences (SAD). In this thesis, a similarity measure is proposed for use in stereo matching that is based on analysis of coefficient signs of transform domain representations. While originally formulated as an extension of Fourier domain phase-only correlation to the discrete cosine transform (DCT), here the method is developed further by applying it to a number of real-valued abstract harmonic transforms, including type II DCT, integer DCT, Walsh-Hadamard and a modified version of Haar. Results are presented showing that the method in general provides better quality than the reference algorithm SAD, while Haar is shown to be the best performing transform, both in terms of quality and speed. Furthermore, the approach is adapted to a mobile platform by replacing the transform with an even simpler one, the census transform. An efficient implementation is developed, which utilizes the single instruction, multiple data (SIMD) enabled NEON core included in many ARM processors currently dominating the mobile market. Special attention is paid to the alternate methods of performing a population count on a variable, which is a key component in computing the similarities. Subjective testing along with numerical measurements set the census-based matching slightly under the reference point SAD in terms of quality, but speed-wise SAD is clearly out-performed by the census approach, thus establishing it as a competitive candidate for stereo matching in mobile applications.
机译:立体匹配是一种被动方法,用于从不同角度的两个视图估计场景的深度。视差会根据点之间的距离在成像平面上的场景点的相对位置之间产生差异。立体匹配的原理是通过找到图像之间的相应点来提取这些视差。尽管已经对立体匹配进行了广泛的研究,但是现有的解决方案仍然在计算负荷和获得的质量之间进行折衷。本文在这两个方面都取得了进展。匹配算法的核心是相似性度量,它直接确定找到对应关系的程度以及它们的可靠性。传统上,使用像素差异(例如绝对差异之和(SAD))在空间域中进行匹配。本文提出了一种基于变换域表示的系数符号分析的相似度度量用于立体匹配。虽然最初是将傅里叶域纯相位相关性扩展表示为离散余弦变换(DCT),但此方法还是通过将其应用于许多实值抽象谐波变换而得到进一步发展,包括II型DCT,整数DCT, Walsh-Hadamard和Haar的修改版。结果表明,该方法通常提供比参考算法SAD更好的质量,而Haar在质量和速度方面均表现出最佳性能。此外,该方法通过用一种甚至更简单的普查变换代替变换来适应移动平台。开发了一种有效的实施方案,该方案利用了目前主导移动市场的许多ARM处理器中包括的具有单指令,多数据(SIMD)功能的NEON内核。要特别注意对变量执行总体计数的替代方法,这是计算相似度的关键组成部分。主观测试与数值测量结果相比,基于普查的匹配在质量上略低于参考点SAD,但普查方法明显优于基于速度的SAD,因此将其确立为移动立体声匹配的竞争性候选者。应用程序。

著录项

  • 作者

    Suominen Olli;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号