首页> 外文OA文献 >Spectral theory for generalized bounded variation perturbations of orthogonal polynomials and Schrodinger operators
【2h】

Spectral theory for generalized bounded variation perturbations of orthogonal polynomials and Schrodinger operators

机译:正交多项式和薛定谔算子广义有界变差扰动的谱理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this text is to present some new results in the spectral theory of orthogonal polynomials and Schrodinger operators.ududThese results concern perturbations of the free Schrodinger operator and of the free case for orthogonal polynomials on the unit circle (which corresponds to Verblunsky coefficients equal to 0) and the real line (which corresponds to off-diagonal Jacobi coefficients equal to 1 and diagonal Jacobi coefficients equal to 0).ududThe condition central to our results is that of generalized bounded variation. This class consists of finite linear combinations of sequences of rotated bounded variation with an L^1 perturbation.ududThis generalizes both usual bounded variation and expressions of the form lambda(x) cos(phi x + alpha) with lambda(x) of bounded variation (and, in particular, with lambda(x) = x^gamma, Wigner-von Neumann potentials) as well as their finite linear combinations.ududAssuming generalized bounded variation and an L^p condition (with any finite p) on the perturbation, our results show preservation of absolutely continuous spectrum, absence of singular continuous spectrum, and that embedded pure points in the continuous spectrum can only occur in an explicit finite set.
机译:本文的目的是在正交多项式和Schrodinger算子的谱理论中给出一些新的结果。 ud ud这些结果涉及自由Schrodinger算子的扰动以及单位圆上正交多项式的自由情况的扰动(对应于Verblunsky系数等于0)和实线(对应于非对角Jacobi系数等于1和对角Jacobi系数等于0)。 ud ud我们结果的中心条件是广义有界变化的条件。此类由具有L ^ 1扰动的旋转有界变异序列的有限线性组合组成。 ud ud概括了通常的有界变异以及lambda(x)cos(phi x + alpha)与lambda(x)形式的表达式有界变化(尤其是lambda(x)= x ^伽马,维格纳-冯·诺伊曼势能)及其有限的线性组合。 ud ud假设广义有界变化和L ^ p条件(任何有限p)在微扰上,我们的结果表明,保留了绝对连续谱,不存在奇异连续谱,并且连续谱中嵌入的纯点只能在显式有限集中出现。

著录项

  • 作者

    Lukic Milivoje;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号