Space trajectory design is often achieved through a combination of dynamical systems theory and optimal control. The union of trajectory design techniques utilizing invariant manifolds of the planar circular restricted three-body problem and the optimal control scheme Discrete Mechanics and Optimal Control (DMOC) facilitates the design of low-energy trajectories in the N-body problem. In particular, DMOC is used to optimize a trajectory from the Earth to the Moon in the 4-body problem, removing the mid-course change in velocity usually necessary for such a trajectory while still exploiting the structure from the invariant manifolds. ududThis thesis also focuses on how to adapt DMOC, a method devised with a constant step size, for the highly nonlinear dynamics involved in trajectory design. Mesh refinement techniques that aim to reduce discretization errors in the solution and energy evolution and their effect on DMOC optimization are explored and compared with trajectories created using time adaptive variational integrators. ududFurthermore, a time adaptive form of DMOC is developed that allows for a variable step size that is updated throughout the optimization process. Time adapted DMOC is based on a discretization of Hamilton's principle applied to the time adapted Lagrangian of the optimal control problem. Variations of the discrete action of the optimal control Lagrangian lead to discrete Euler-Lagrange equations that can be enforced as constraints for a boundary value problem. This new form of DMOC leads to the accurate and efficient solution of optimal control problems with highly nonlinear dynamics. Time adapted DMOC is tested on several space trajectory problems including the elliptical orbit transfer in the 2-body problem and the reconfiguration of a cubesat. ud
展开▼
机译:空间轨迹设计通常是通过结合动力系统理论和最优控制来实现的。利用平面圆形受限三体问题的不变流形和最优控制方案离散力学与最优控制(DMOC)的轨迹设计技术的结合,促进了N体问题中低能量轨迹的设计。尤其是,DMOC用于优化4体问题中从地球到月球的轨迹,消除了这种轨迹通常必需的中间速度变化,同时仍从不变歧管中利用结构。 ud ud本文还着重研究了如何将DMOC(一种步长恒定的方法)用于轨迹设计中涉及的高度非线性动力学。研究了网格精化技术,该技术旨在减少解决方案和能量演化中的离散化误差及其对DMOC优化的影响,并与使用时间自适应变分积分器创建的轨迹进行了比较。 ud ud此外,还开发了一种时间自适应形式的DMOC,它允许在整个优化过程中更新可变步长。时间适应的DMOC基于汉密尔顿原理的离散化,该原理适用于最优控制问题的时间适应拉格朗日法。最优控制拉格朗日机的离散作用的变化导致离散的欧拉-拉格朗日方程,可以将其作为边界值问题的约束条件来执行。 DMOC的这种新形式可以通过高度非线性的动力学来准确有效地解决最优控制问题。经过时间调整的DMOC已在几个空间轨迹问题上进行了测试,包括2体问题中的椭圆轨道转移和cubesat的重新配置。 ud
展开▼