首页> 外文期刊>Journal of guidance, control, and dynamics >Trajectory Design Combining Invariant Manifolds with Discrete Mechanics and Optimal Control
【24h】

Trajectory Design Combining Invariant Manifolds with Discrete Mechanics and Optimal Control

机译:不变流形与离散力学和最优控制相结合的弹道设计

获取原文
获取原文并翻译 | 示例
           

摘要

A mission design technique that combines invariant manifold techniques, discrete mechanics, and optimal control produces locally optimal low-energy trajectories. Previously, invariant manifolds of the planar circular restricted three-body problem have been used to design trajectories with relatively small midcourse change in velocity A V. A different method of using invariant manifolds is explored to design trajectories directly in the four-body problem. Then, using the local optimal control method DMOC (Discrete Mechanics and Optimal Control), it is possible to reduce the midcourse A V to zero. The influence of different boundary conditions on the optimal trajectory is also demonstrated. These methods are tested on a trajectory that begins in Earth orbit and ends in ballistic capture at the moon. Impulsive DMOC trajectories require up to 19 % less A V than trajectories using a Hohmann transfer. When applied to low-thrust trajectories, DMOC produces an improvement of up to 59% in the mass fraction and 22% in travel time when compared with results from shooting methods.
机译:结合不变歧管技术,离散力学和最优控制的任务设计技术可产生局部最优的低能量轨迹。以前,平面圆形受限三体问题的不变流形已经用于设计速度A V的中途变化相对较小的轨迹。探索了一种使用不变流形的方法直接在四体问题中设计轨迹。然后,使用局部最优控制方法DMOC(离散力学和最优控制),可以将中段A V减小为零。还证明了不同边界条件对最优轨迹的影响。这些方法在从地球轨道开始到在月球进行弹道捕获结束的轨迹上进行了测试。相比使用Hohmann转移的轨迹,脉冲DMOC轨迹所需的A V最多降低19%。当应用于低推力轨迹时,与射击方法相比,DMOC的质量分数提高了59%,行程时间提高了22%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号