This dissertation describes work in three inter-related areas – micro-fluidics, opto-fluidics and fluidic self-assembly. Micro-fluidics has gotten a boost in recent years with the development of multilayered elastomeric devices made of poly (dimethylsiloxane) (PDMS), allowing active elements like valves and pumps. However, while PDMS has many advantages, it is not resistant to organic solvents. New materials and/or new designs are needed for solvent resistance. I describe how novel fluorinated elastomers can replace PDMS when combined with three dimensional (3-D) solid printing. I also show how another 3-D fabrication method, multilayer photo-lithography, allows for fabrication of devices integrating filters. In general, 3-D fabrications allow new kinds of micro-fluidic devices to be made that would be impossible to emulate with two dimensional chips.ududIn opto-fluidics, I describe a number of experiments with quantum dots both inside and outside chips. Inside chips, I manipulate quantum dots using hydrodynamic focusing to pattern fine lines, like a barcode. Outside chips, I describe our attempts to create quantum dot composites with micro-spheres. I also show how evaporated gold films and chemical passivation can then be used to enhance the emission of quantum dots.ududFinally, within fluids, self-assembly is an attractive way to manipulate materials, and I provide two examples: first, a DNA-based energy transfer molecule that relies on quantum mechanics and self-assembles inside fluids. This kind of molecular photonics mimics parts of the photosynthetic apparatus of plants and bacteria. The second example of self-assembly in fluids describes a new phenomena - the surface tension mediated self assembly of particles like quantum dots and micro-spheres into fine lines. This self assembly by capillary flows can be combined with photo-lithography, and is expected to find use in future nano- and micro-fabrication schemes.ududIn conclusion, advances in fluidics, integrating materials like quantum dots and solvent resistant elastomers along with 3-D fabrication and methods of self assembly, provide a new set of tools that significantly expand our control over fluids.
展开▼
机译:本文介绍了三个相互关联的领域的工作-微流体,光流体和流体自组装。近年来,随着由聚二甲基硅氧烷(PDMS)制成的多层弹性体设备的开发,微流体技术得到了推动,该设备允许使用诸如阀门和泵之类的有源元件。但是,尽管PDMS具有许多优点,但它不耐有机溶剂。需要新材料和/或新设计来提高耐溶剂性。我描述了新颖的氟化弹性体与三维(3-D)固体印刷结合时如何能替代PDMS。我还展示了另一种3-D制造方法(多层光刻)如何允许制造集成滤光片的器件。通常,3-D制造允许制造新型的微流控设备,而这是不可能用二维芯片进行仿真的。 ud ud在光流控学中,我描述了许多利用内部和外部量子点进行的实验筹码。在芯片内部,我使用流体动力聚焦来操纵量子点,以图案化细线,例如条形码。在外部芯片中,我描述了我们尝试创建具有微球体的量子点复合材料的尝试。我还展示了如何使用蒸发的金膜和化学钝化来增强量子点的发射。 ud ud最后,在流体中,自组装是一种有吸引力的操纵材料的方式,我提供了两个示例:首先,一个基于DNA的能量转移分子,其依赖于量子力学并在流体内部自组装。这种分子光子学模仿植物和细菌的光合作用的一部分。流体中自组装的第二个例子描述了一个新现象-表面张力介导的将诸如量子点和微球之类的颗粒自组装成细线。这种通过毛细管流进行的自组装可以与光刻相结合,并有望在未来的纳米和微加工方案中得到应用。 ud ud总之,流体技术的进步,将诸如量子点和耐溶剂弹性体等材料整合在一起借助3-D制造和自组装方法,提供了一套新工具,可大大扩展我们对流体的控制。
展开▼