首页> 外文OA文献 >Regulation expression pathway analysis (REPA): a novel method to facilitate biological interpretation of high throughput expression profiling data
【2h】

Regulation expression pathway analysis (REPA): a novel method to facilitate biological interpretation of high throughput expression profiling data

机译:调节表达途径分析(REpa):促进高通量表达谱分析数据的生物学解释的新方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the past decade there have been great advances and emergence of new techniquesudin the field of gene expression profiling. As the popularity of these techniques grew,udthe amount of data that gets generated has also grown. The task of analyzing thisuddata to create a global picture to identify the biological pathways that are relevantudto the study has been addressed by many. These approaches (collectively termed asudenrichment analysis) have also grown in sophistication and accuracy making themudthe default step following a gene profiling experiment. However, enrichment analysisudapproaches do not provide pointers to likely regulators in their results.udIn this project we built a system called Regulation Expression Pathway Analysisudor REPA to facilitate the biological interpretation of results from high throughputudgene expression profiling experiments. In particular, we provide researchers with geneudsets that were most active in the biological phenomenon under study and their likelyudregulators. Users can input the gene expression profile data from their expressionudprofiling experiments in REPA and get a list of disturbed gene sets and inferredudtranscription factors that possibly regulate these gene sets.udTo build this system first we processed the transcription factor binding data fromudthe ENCODE project to quantify the strength of regulation that each transcriptionudfactor has on each gene set. Then we build a gene expression enrichment analysisudsystem that can analyze the gene expression profiling data and list the most active gene sets. Finally we combine the results from the previous two steps to arrive at audmore complete picture that gives users information about not only the most activeudgene sets, but also about the most likely regulators of these gene sets.
机译:在过去的十年中,在基因表达谱分析领域已经有了很大的进步和新技术的出现。随着这些技术的普及, ud所产生的数据量也在增加。分析 uddata以创建全局图片以识别与研究相关的生物学途径的任务已经被许多人解决。这些方法(统称为“富集分析”)也已经发展成熟,且准确性很高,使其成为基因谱分析实验之后的默认步骤。但是,富集分析方法无法在其结果中提供指向可能的调节子的指示。 ud在此项目中,我们构建了一个称为“调节表达途径分析” /“ udor REPA”的系统,以促进对高通量/预算表达分析实验结果的生物学解释。特别是,我们为研究人员提供了在所研究的生物现象中最活跃的基因突变及其可能的调控子。用户可以从REPA中的表达 udprofiling实验中输入基因表达谱数据,并获得受干扰的基因集和可能调控这些基因集的推断 udtranscription因子的列表。 ud首先要构建此系统,我们处理了来自 ENCODE项目可量化每个转录 udfactor对每个基因集的调控强度。然后,我们建立了一个基因表达富集分析 udsystem,可以分析基因表达谱数据并列出最活跃的基因集。最后,我们将前两个步骤的结果结合起来,得出一个更完整的图片,不仅为用户提供有关最活跃的预算集的信息,而且还为这些基因集的最可能的调节子提供了信息。

著录项

  • 作者

    Patra Pranjal;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号