首页> 外文OA文献 >On the application of two Gauss-Legendre quadrature rules for composite numerical integration over a tetrahedral region
【2h】

On the application of two Gauss-Legendre quadrature rules for composite numerical integration over a tetrahedral region

机译:关于两个Gauss-Legendre求积法在四面体区域上复合数值积分的应用

摘要

In this paper we first present a Gauss-Legendre quadrature rule for the evaluation of I = ∫ ∫ T ∫ f (x, y, z) d x d y d z, where f(x, y, z) is an analytic function in x, y, z and T is the standard tetrahedral region: {(x, y, z){divides}0 ≤ x, y, z ≤ 1, x + y + z ≤ 1} in three space (x, y, z). We then use a transformation x = x(ξ, η, ζ), y = y(ξ, η, ζ) and z = z(ξ, η, ζ) to change the integral into an equivalent integral {Mathematical expression} over the standard 2-cube in (ξ, η, ζ) space: {(ξ, η, ζ){divides} -1 ≤ ξ, η, ζ ≤ 1}. We then apply the one-dimensional Gauss-Legendre quadrature rules in ξ, η and ζ variables to arrive at an efficient quadrature rule with new weight coefficients and new sampling points. Then a second Gauss-Legendre quadrature rule of composite type is obtained. This rule is derived by discretising the tetrahedral region T into four new tetrahedra T i c (i = 1, 2, 3, 4) of equal size which are obtained by joining the centroid of T, c = (1/4, 1/4, 1/4) to the four vertices of T. By use of the affine transformations defined over each T i c and the linearity property of integrals leads to the result:I = underover(∑, i = 1, 4) ∫ ∫ Tic ∫ f (x, y, z) d x d y d z = frac(1, 4) ∫ ∫ T ∫ G (X, Y, Z) d X d Y d Z,where{Mathematical expression}refer to an affine transformations which map each T i c into the standard tetrahedral region T. We then write{Mathematical expression}and a composite rule of integration is thus obtained. We next propose the discretisation of the standard tetrahedral region T into p 3 tetrahedra T i (i = 1(1)p 3) each of which has volume equal to 1/(6p 3) units. We have again shown that the use of affine transformations over each T i and the use of linearity property of integrals leads to the result:{Mathematical expression}where{Mathematical expression}refer to the affine transformations which map each T i in (x (α,p), y (α,p), z (α,p)) space into a standard tetrahedron T in the (X, Y, Z) space. We can now apply the two rules earlier derived to the integral ∫ ∫ T ∫ H (X, Y, Z) d X d Y d Z, this amounts to the application of composite numerical integration of T into p 3 and 4p 3 tetrahedra of equal sizes. We have demonstrated this aspect by applying the above composite integration method to some typical triple integrals. © 2006 Elsevier Inc. All rights reserved.
机译:在本文中,我们首先提出用于评估I =∫∫T∫f(x,y,z)dxdydz的Gauss-Legendre正交规则,其中f(x,y,z)是x,y,x的解析函数。 z和T是标准四面体区域:{(x,y,z){除} 0≤x,y,z≤1,x + y + z≤1}在三个空间(x,y,z)中。然后,我们使用变换x = x(ξ,η,ζ),y = y(ξ,η,ζ)和z = z(ξ,η,ζ)将积分变为等价积分{数学表达式} (ξ,η,ζ)空间中的标准2立方体:{(ξ,η,ζ){除} -1≤ξ,η,ζ≤1}。然后,我们在ξ,η和ζ变量中应用一维Gauss-Legendre正交规则,以使用新的权重系数和新的采样点得出有效的正交规则。然后获得复合类型的第二个高斯-勒根德勒正交规则。通过将四面体区域T离散为四个相等大小的新四面体T ic(i = 1,2,3,4)来得出该规则,这些四面体T ic通过连接T的质心而获得,c =(1/4,1/4 ,1/4)到T的四个顶点。通过使用在每个T ic上定义的仿射变换和积分的线性性质,得出以下结果:I = underover(∑,i = 1,4)∫∫Tic∫ f(x,y,z)dxdydz = frac(1,4)∫∫T∫G(X,Y,Z)d X d Y d Z,其中{数学表达式}指代映射每个T ic的仿射变换进入标准的四面体区域T。然后我们写{数学表达式},从而得到一个积分的复合规则。接下来,我们建议将标准四面体区域T离散为p 3个四面体T i(i = 1(1)p 3),每个四面体的体积等于1 /(6p 3)单位。我们再次证明,在每个T i上使用仿射变换和积分的线性特性会导致以下结果:{数学表达式}其中{数学表达式}是指映射每个T i在(x(将(α,p),y(α,p),z(α,p))空间转换为(X,Y,Z)空间中的标准四面体T。现在,我们可以将先前导出的两个规则应用于积分∫∫T∫H(X,Y,Z)d X d Y d Z,这相当于将T的复合数值积分应用到p的p 3和4p 3四面体中大小相等。通过将上述复合积分方法应用于一些典型的三重积分,我们已经证明了这一方面。 ©2006 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号