首页> 外文OA文献 >Laplace transform and adomian decomposition methods for solving nonlinear volterra integro-differential equations
【2h】

Laplace transform and adomian decomposition methods for solving nonlinear volterra integro-differential equations

机译:求解非线性Volterra积分微分方程的Laplace变换和Adomian分解方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Since its introduction in the 1980s, the Adomian Decomposition Method (ADM) has proven to be an efficient and reliable method for solving many types of problems. Originally developed to solve nonlinear functional equations, the ADM has since been used for a wide range of equation types (like boundary value problems, integral equations, equations arising in flow of incompressible and compressible fluids etc...). This work is devoted to an evaluation of the effectiveness of this method when used for solve nonlinear Volterra integro-differential equations and also the combined form of the Laplace transform method with the Adomian decomposition method is effectively and useful way to develop an analytic treatment for many types of equations, linear and nonlinear ordinary differential equations (ODE), linear and nonlinear partial differential equations (PDE). In this study will combined Laplace transform-Adomian decomposition method to solve nonlinear Volterra integro-differential equations, this study is divided into five Chapters. The first chapter is devoted to an introduction, the second is devoted to the literature review, and Chapter 3 devoted to research methodology, Chapter 4 presents the solution for the nonlinear Volterra integro-differential equation. Finally, the Chapter 5 is devoted to the conclusion and recommendations based on this study.
机译:自从1980年代引入Adomian分解方法(ADM)以来,它已被证明是解决多种类型问题的有效且可靠的方法。 ADM最初是为解决非线性函数方程而开发的,此后已被广泛用于各种方程类型(例如边界值问题,积分方程,在不可压缩和可压缩流体流动中产生的方程等)。这项工作致力于评估该方法用于求解非线性Volterra积分微分方程的有效性,并且Laplace变换方法与Adomian分解方法的组合形式对于开发用于许多分析方法的分析方法是有效且有用的方式方程类型,线性和非线性常微分方程(ODE),线性和非线性偏微分方程(PDE)。本研究将拉普拉斯变换-Adomian分解方法结合起来求解非线性Volterra积分微分方程,本研究共分为五章。第一章为导论,第二章为文献综述,第三章为研究方法,第四章为非线性Volterra积分微分方程的解。最后,基于本研究的第五章专门针对结论和建议。

著录项

  • 作者

    Vafaeifar Zahra;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号