首页> 外文OA文献 >Design of a neural network for FPGA implementation
【2h】

Design of a neural network for FPGA implementation

机译:用于FPGA实现的神经网络设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Very often complex transfer functions are needed to be implemented in ASIC for faster or real-time application. Other than implementing a transfer function according to its equation or algorithm, prediction method can be used in certain application where accuracy can be tolerated. In this project, application of neural network as a predictor is studied. Focus will be placed on back-propagation feed-forward neural network and its realization in hardware using Verilog Hardware Descriptive Language (HDL). Hardware design challenges like hardware resource utilization, throughput of various design approaches were explored. Main objective of this project is to produce a high throughput reconfigurable back propagation neural network hardware module that can be applied or integrated into bigger hardware system. Altera Quartus II and ModelSim-Altera CAD tool was used as logic synthesizing tool and hardware simulation tool, respectively, to achieve abovementioned objective. MATLAB was also being used to model neural network in software which served as a benchmark for hardware design. Multi-cycle design approach successfully reduces resource utilization on hardware-intensive neural network module, while pipelining the design helped to achieve a high-throughput design. Utilization of RAM for reconfiguration purpose greatly reduced throughput of the design due to the fact that only one weight or bias values are loaded in every clock cycle.
机译:通常,需要在ASIC中实现复杂的传递函数,以实现更快或实时的应用。除了根据方程式或算法实现传递函数外,预测方法还可以用于可以容忍精度的某些应用中。在这个项目中,研究了神经网络作为预测器的应用。重点将放在反向传播前馈神经网络及其在使用Verilog硬件描述语言(HDL)的硬件中的实现。探索了硬件设计挑战,例如硬件资源利用率,各种设计方法的吞吐量。该项目的主要目标是生产可应用于或集成到更大的硬件系统中的高吞吐量可重构反向传播神经网络硬件模块。为了实现上述目的,分别使用Altera Quartus II和ModelSim-Altera CAD工具作为逻辑综合工具和硬件仿真工具。 MATLAB还被用于在软件中对神经网络进行建模,该软件可作为硬件设计的基准。多周期设计方法成功降低了硬件密集型神经网络模块的资源利用率,而流水线设计有助于实现高吞吐量设计。由于每个时钟周期仅加载一个权重或偏置值,因此将RAM用于重新配置目的大大降低了设计的吞吐量。

著录项

  • 作者

    Lim Ee Ric;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号