首页> 外文OA文献 >Simulation Of Carbon Nanotubes For Hydrogen Storage Using Neural Network: A Preliminary Study
【2h】

Simulation Of Carbon Nanotubes For Hydrogen Storage Using Neural Network: A Preliminary Study

机译:基于神经网络的碳纳米管储氢模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The discovery of carbon nanotubes (CNT) by 5umio Iijima in 1991 has attracted many researchers worldwide to study and explore the newly found materials. The unique characteristics that CNT possess include excellent properties for energy production and hydrogen storage. Currently, there are 4 technologies available for hydrogen storage: compressed gas, liquefaction, metal hydrides and physisorption. It has been claimed that physisorption is the most promising hydrogen storage method for meeting the goals of the US Department of Energy (DOE) Hydrogen Plan for fuel cell powered vehicles. CNT are considered for hydrogen storage due to their low density, high strength, and hydrogen adsorption characteristics. A number of theoretical and experimental investigations have been made in this area mainly to study whether CNT can reach the benchmark of gravimetric density of 6.5 wt% and volumetric density of 62 kg H2/m3 set by the DOE Hydrogen Plan. Based on previous researches, a numerical simulation of CNT for hydrogen storage using Artificial Neural Network (ANN) will be developed.
机译:1991年饭岛5umio的碳纳米管(CNT)的发现吸引了全世界许多研究人员来研究和探索新发现的材料。碳纳米管具有的独特特性包括出色的能量生产和储氢性能。当前,有4种可用于储氢的技术:压缩气体,液化,金属氢化物和物理吸附。据称,物理吸附是实现美国能源部(DOE)燃料电池动力车辆氢计划目标的最有前途的储氢方法。 CNT由于其低密度,高强度和氢吸附特性而被认为可以储氢。在该领域已经进行了许多理论和实验研究,主要研究CNT是否可以达到DOE氢计划设定的重量密度6.5 wt%和体积密度62 kg H2 / m3的基准。基于先前的研究,将开发使用人工神经网络(ANN)的碳纳米管用于储氢的数值模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号