首页> 外文OA文献 >Human driving skill for human adaptive mechatronics applications by using neural network system
【2h】

Human driving skill for human adaptive mechatronics applications by using neural network system

机译:神经网络系统在人类自适应机电一体化应用中的驾驶技巧

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The existence of the new improvement system for Human Machine System (HMS) is called as Human Adaptive Mechatronic (HAM) system. The main difference between these two systems is the relationship between human and machine in the system. HMS is one way relationship between human and machine while HAM is a two way relationship between human and machine. In HAM, not only human need to adapt the characteristics of machine but the machine also has to learn on human characteristics. As a part of mechatronics system, HAM has an ability to adapt with human skill to improve the performance of machine. Driving a car is one of the examples of application where HAM can be applied. One of the important elements in HAM is the quantification of human skill. Therefore, this project proposed a method to quantify the driving skill by using Artificial Neural Network (ANN) system. Feedforward neural network is used to create a multilayer neural network and five models of network were designed and tested using MATLAB Simulink software. Then, the best model from five models is chosen and compared with other method of quantification skill for verification. Based on results, the critical stage in designing the network of the system is to set the number of neurons in the hidden layer that affects an accuracy of the outputs
机译:人机系统(HMS)的新改进系统的存在被称为人自适应机电(HAM)系统。这两个系统之间的主要区别是系统中人与机器之间的关系。 HMS是人与机器之间的一种双向关系,而HAM是人与机器之间的两种双向关系。在HAM中,不仅人类需要适应机器的特性,而且机器还必须学习人类的特性。作为机电一体化系统的一部分,HAM具有适应人类技能以提高机器性能的能力。驾驶汽车是可以应用HAM的应用示例之一。 HAM中的重要元素之一是对人类技能的量化。因此,该项目提出了一种使用人工神经网络(ANN)系统进行驾驶技能量化的方法。前馈神经网络用于创建多层神经网络,并使用MATLAB Simulink软件设计和测试了五个网络模型。然后,从五个模型中选择最佳模型,并将其与其他量化技能方法进行比较以进行验证。根据结果​​,设计系统网络的关键阶段是设置隐层中影响输出精度的神经元数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号