首页> 外文OA文献 >Molecular dynamics modelling of brittle-ductile cutting mode transition : case study on silicon carbide
【2h】

Molecular dynamics modelling of brittle-ductile cutting mode transition : case study on silicon carbide

机译:脆性-切削模态转变的分子动力学建模:以碳化硅为例

摘要

The mechanism of brittle-ductile cutting mode transition has received much attention over the past two decades. Due to the difficulties in directly observing the cutting zone during the brittle-ductile cutting mode transition by experimental techniques, many molecular dynamics (MD) studies have been conducted to investigate the atomicscale details of the phenomena, e.g. phase transformation, stress distribution and crack initiation, mostly under nanoscale undeformed chip thicknesses. A research gap is that direct MD modelling of the transition under practical undeformed chip thicknesses was not achieved in previous studies, due to the limitations in both computation capability and interaction potential. Important details of the transition under practical undeformed chip thicknesses thereby remain unclear, e.g. the location of crack formation and the stress distribution. In this study, parallel MD codes based on graphics processing units (GPU) are developed to enable large-scale MD simulations with multi-million atoms. In addition, an advanced interaction potential which reproduces brittle fracture much more accurately is adopted. As a result, the direct MD simulation of brittle-ductile cutting mode transition is realised for the first time under practical undeformed chip thicknesses. The MD-modelled critical undeformed chip thickness is verified by a plunge cutting experiment. The MD modelling shows that tensile stress exists around the cutting zone and increases with undeformed chip thickness, which finally induces brittle fractures. The location of crack formation and direction of propagation varies with undeformed chip thickness in the MD simulations, which agrees with the surface morphologies of the taper groove produced by the plunge cutting experiment. This study contributes significantly to the understanding of the details involved in the brittle-ductile cutting mode transition.
机译:在过去的二十年中,脆性-韧性切削模式转变的机理受到了广泛的关注。由于通过实验技术在脆性-延性切削模式过渡过程中难以直接观察切削区域,因此进行了许多分子动力学(MD)研究以研究这种现象的原子尺度细节。相变,应力分布和裂纹萌生,主要是在纳米级未变形切屑厚度下。一个研究空白是,由于计算能力和相互作用潜能的限制,在以前的研究中未实现在实际未变形切屑厚度下转变的直接MD建模。因此,在实际未变形的切屑厚度下的转变的重要细节仍然不清楚,例如。裂纹形成的位置和应力分布。在这项研究中,开发了基于图形处理单元(GPU)的并行MD代码,以实现具有数百万个原子的大规模MD仿真。另外,采用了能更准确地再现脆性断裂的先进的相互作用潜能。结果,在实际未变形的切屑厚度下,首次实现了脆性-延性切削模式转变的直接MD模拟。通过切入切割实验验证了MD建模的未变形临界切屑厚度。 MD模型表明,拉伸应力存在于切削区域周围,并随着未变形的切屑厚度而增加,最终导致脆性断裂。在MD模拟中,裂纹形成的位置和传播的方向随未变形的切屑厚度而变化,这与通过切入切削实验产生的锥槽的表面形态一致。这项研究对理解脆性-延性切削模式转变所涉及的细节做出了重要贡献。

著录项

  • 作者

    Xiao GB; To S; Zhang GQ;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号