首页> 美国政府科技报告 >Hybrid Quantum and Molecular Mechanics Embedded Cluster Models for Chemistry onSilicon and Silicon Carbide Surfaces
【24h】

Hybrid Quantum and Molecular Mechanics Embedded Cluster Models for Chemistry onSilicon and Silicon Carbide Surfaces

机译:硅和碳化硅表面化学的杂化量子和分子力学嵌入式团簇模型

获取原文

摘要

Fabrication of silicon carbide (SiC) semiconductor devices are of interest foraerospace applications because of their high-temperature tolerance. Growth of an insulating SiO2 layer on SiC is a poorly understood process, and sometimes produces interface defects that degrade device performance. Accurate theoretical models of surface chemistry, using quantum mechanics (QM), do not exist because of the huge computational cost of solving Schroedinger's equation for a molecular cluster large enough to represent a surface. Molecular mechanics (MM), which describes a molecule as a collection of atoms interacting through classical potentials, is a fast computational method, good at predicting molecular structure, but cannot accurately model chemical reactions. A new hybrid QM/MM computational method for surface chemistry was developed and applied to silicon and SiC surfaces. The addition of MM steric constraints was shown to have a large effect on the energetics of O atom adsorption on SiC. Adsorption of O atoms on Si-terminated SiC(111) favors above surface sites, in contrast to Si(111), but favors subsurface adsorption on C-terminated SiC(111). This difference, and the energetics of C atom etching via CO2 desorption, can explain the observed poor performance of SiC devices in which insulating layers were grown on C-terminated surfaces.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号