首页> 外文OA文献 >An approach to tune fuzzy controllers based on reinforcement learning for autonomous vehicle control
【2h】

An approach to tune fuzzy controllers based on reinforcement learning for autonomous vehicle control

机译:基于强化学习的自动驾驶汽车模糊控制器整定方法

摘要

In this paper, we suggest a new approach for tuning parameters of fuzzy controllers based on reinforcement learning. The architecture of the proposed approach is comprised of a Q estimator network (QEN) and a Takagi-Sugeno-type fuzzy inference system (TSK-FIS). Unlike other fuzzy Q-learning approaches that select an optimal action based on finite discrete actions, the proposed controller obtains the control output directly from TSK-FIS. With the proposed architecture, the learning algorithms for all the parameters of the QEN and the FIS are developed based on the temporal-difference (TD) methods as well as the gradient-descent algorithm. The performance of the proposed design technique is illustrated by simulation studies of a vehicle longitudinal-control system.
机译:在本文中,我们提出了一种基于强化学习的模糊控制器参数整定的新方法。所提出的方法的体系结构由一个Q估计器网络(QEN)和一个Takagi-Sugeno型模糊推理系统(TSK-FIS)组成。与其他基于有限离散动作选择最佳动作的模糊Q学习方法不同,所提出的控制器直接从TSK-FIS获得控制输出。利用所提出的架构,基于时差(TD)方法和梯度下降算法,开发了针对QEN和FIS的所有参数的学习算法。车辆纵向控制系统的仿真研究说明了所提出的设计技术的性能。

著录项

  • 作者

    Dai X; Li CK; Rad AB;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号