首页> 外文OA文献 >Refinement of damage identification capability of neural network techniques in application to a suspension bridge
【2h】

Refinement of damage identification capability of neural network techniques in application to a suspension bridge

机译:神经网络技术损伤识别能力的细化在悬索桥中的应用

摘要

The idea of using measured dynamic characteristics for damage detection is attractive because it allows for a global evaluation of the structural health and condition. However, vibration-based damage detection for complex structures such as long-span cable-supported bridges still remains a challenge. As a suspension or cable-stayed bridge involves in general thousands of structural components, the conventional damage detection methods based on model updating and/or parameter identification might result in ill-conditioning and non-uniqueness in the solution of inverse problems. Alternatively, methods that utilize, to the utmost extent, information from forward problems and avoid direct solution to inverse problems would be more suitable for vibration-based damage detection of long-span cable-supported bridges. The auto-associative neural network (ANN) technique and the probabilistic neural network (PNN) technique, that both eschew inverse problems, have been proposed for identifying and locating damage in suspension and cable-stayed bridges. Without the help of a structural model, ANNs with appropriate configuration can be trained using only the measured modal frequencies from healthy structure under varying environmental conditions, and a new set of modal frequency data acquired from an unknown state of the structure is then fed into the trained ANNs for damage presence identification. With the help of a structural model, PNNs can be configured using the relative changes of modal frequencies before and after damage by assuming damage at different locations, and then the measured modal frequencies from the structure can be presented to locate the damage. However, such formulated ANNs and PNNs may still be incompetent to identify damage occurring at the deck members of a cable-supported bridge because of very low modal sensitivity to the damage. The present study endeavors to enhance the damage identification capability of ANNs and PNNs when being applied for identification of damage incurred at deck members. Effort is first made to construct combined modal parameters which are synthesized from measured modal frequencies and modal shape components to train ANNs for damage alarming. With the purpose of improving identification accuracy, effort is then made to configure PNNs for damage localization by adapting the smoothing parameter in the Bayesian classifier to different values for different pattern classes. The performance of the ANNs with their input being modal frequencies and the combined modal parameters respectively and the PNNs with constant and adaptive smoothing parameters respectively is evaluated through simulation studies of identifying damage inflicted on different deck members of the double-deck suspension Tsing Ma Bridge.
机译:使用测量的动态特性进行损伤检测的想法很有吸引力,因为它可以对结构的健康状况进行全面评估。然而,对于复杂结构(例如大跨度电缆支撑的桥梁)的基于振动的损坏检测仍然是一个挑战。由于悬索桥或斜拉桥通常涉及成千上万个结构部件,因此基于模型更新和/或参数识别的常规损坏检测方法可能会在逆问题的解决方案中导致不良状况和不唯一性。可替代地,最大程度地利用来自前向问题的信息并避免直接解决反问题的方法将更适合于大跨度电缆支撑桥的基于振动的损伤检测。已经提出了避免回避问题的自联想神经网络(ANN)技术和概率神经网络(PNN)技术,用于识别和定位悬索桥和斜拉桥的损伤。无需结构模型的帮助,就可以仅使用在变化的环境条件下从健康结构中测得的模态频率来训练具有适当配置的人工神经网络,然后将从结构的未知状态获取的一组新的模态频率数据输入到神经网络中。训练有素的人工神经网络来进行损伤存在识别。借助于结构模型,可以通过假设损坏前后的模态频率的相对变化来配置PNN,方法是在不同位置假设损坏,然后可以显示从结构中测得的模态频率来定位损坏。但是,由于对损伤的模态敏感性非常低,因此,这种公式化的ANN和PNN可能仍然无法识别在电缆支撑桥梁的甲板构件上发生的损伤。本研究旨在提高ANN和PNN的损伤识别能力,以用于识别甲板成员遭受的损伤。首先努力构造组合的模态参数,这些模态参数由测得的模态频率和模态形状成分合成,以训练ANN进行损伤预警。为了提高识别准确度,然后通过将贝叶斯分类器中的平滑参数适应于不同模式类别的不同值,努力配置用于损伤定位的PNN。通过模拟研究确定双层甲板悬架青马大桥的不同甲板构件所遭受的破坏,通过仿真研究评估了分别以模态频率和组合模态参数输入的人工神经网络以及具有恒定和自适应平滑参数的人工神经网络的性能。

著录项

  • 作者

    Wang JY; Ni YQ;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号