首页> 外文期刊>International Journal of Material Forming >Identification of material parameters of the Gurson–Tvergaard–Needleman damage law by combined experimental, numerical sheet metal blanking techniques and artificial neural networks approach
【24h】

Identification of material parameters of the Gurson–Tvergaard–Needleman damage law by combined experimental, numerical sheet metal blanking techniques and artificial neural networks approach

机译:通过组合实验,数值钣金落料技术和人工神经网络方法识别Gurson-Tvergaard-Needleman损伤定律的材料参数

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a method for the identification of coupled damage model parameters in sheet metal blanking and a study of their sensitivity to the blanking clearance. The existing finite element models easily describe the elastoplastic behaviour occurring during the sheet metal blanking. However, the description of the damage evolution is much more delicate to appreciate. The proposed method combines finite element method (FEM) with artificial neural networks (ANN) analysis in order to identify the values of the Gurson-Tvergaard-Needleman (GTN) parameters. The blanking tests are carried out to obtain the experimental material response under loading (blanking force—blanking penetration curves). A finite element model is used to compute the load displacement curve depending on a systematic variation of GTN parameters. Via a full factorial design, a numerical database is built up and is used for the ANN training. The identification of the damage properties (for a fixed clearance) is done by minimizing the error between an experimental load displacement curve and a predicted one by the ANN function. The identified damage law parameters are validated on the other experimental configurations of blanking tests (fixed clearance, different punch velocities). Varying the blanking clearance allows us to study its impact on the damage law parameters.
机译:本文提出了一种识别钣金落料中耦合损伤模型参数的方法,并研究了其对落料间隙的敏感性。现有的有限元模型可以轻松描述钣金下料过程中发生的弹塑性行为。但是,对损害演变的描述更难以理解。提出的方法将有限元方法(FEM)与人工神经网络(ANN)分析相结合,以识别Gurson-Tvergaard-Needleman(GTN)参数的值。进行落料试验以获得负载下的实验材料响应(落料力-落料穿透曲线)。有限元模型用于根据GTN参数的系统变化来计算载荷位移曲线。通过全因子设计,可以建立一个数字数据库并将其用于ANN训练。通过最小化实验载荷位移曲线和ANN函数预测的载荷位移曲线之间的误差,可以确定损伤特性(对于固定间隙)。在冲裁试验的其他实验配置(固定间隙,不同的冲头速度)上可以验证所识别出的破坏规律参数。改变消隐间隙可以让我们研究其对破坏定律参数的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号