首页> 外文OA文献 >Land cover change detection at subpixel resolution with a Hopfield neural network
【2h】

Land cover change detection at subpixel resolution with a Hopfield neural network

机译:Hopfield神经网络以亚像素分辨率检测土地覆盖变化

摘要

In this paper, a new subpixel resolution land cover change detection (LCCD) method based on the Hopfield neural network (HNN) is proposed. The new method borrows information from a known fine spatial resolution land cover map (FSRM) representing one date for subpixel mapping (SPM) from a coarse spatial resolution image on another, closer date. It is implemented by using the thematic information in the FSRM to modify the initialization of neuron values in the original HNN. The predicted SPM result was compared to the original FSRM to achieve subpixel resolution LCCD. The proposed method was compared with the original unmodified HNN method as well as six state-of-the-art methods for LCCD. To explore the effect of uncertainty in spectral unmixing, which mainly originates from spectral separability in the input, coarse image, and the point spread function (PSF) of the sensor, a set of synthetic multispectral images with different class separabilities and PSFs was used in experiments. It was found that the proposed LCCD method (i.e., HNN with an FSRM) can separate more real changes from noise and produce more accurate LCCD results than the state-of-the-art methods. The advantage of the proposed method is more evident when the class separability is small and the variance in the PSF is large, that is, the uncertainty in spectral unmixing is large. Furthermore, the utilization of an FSRM can expedite the HNN-based processing required for LCCD. The advantage of the proposed method was also validated by applying to a set of real Landsat-Moderate Resolution Imaging Spectroradiometer (MODIS) images.
机译:提出了一种新的基于Hopfield神经网络的亚像素分辨率土地覆被变化检测方法。新方法从已知的精细空间分辨率土地覆盖图(FSRM)借用信息,该地图表示一个日期,而另一个较近的日期则从粗糙的空间分辨率图像获取子像素映射(SPM)。它是通过使用FSRM中的主题信息来修改原始HNN中神经元值的初始化来实现的。将预测的SPM结果与原始FSRM进行比较,以实现亚像素分辨率LCCD。将该方法与原始的未修改的HNN方法以及LCCD的六种最新方法进行了比较。为了探索光谱分解不确定性的影响,该不确定性主要源于传感器输入,粗糙图像和传感器的点扩展函数(PSF)中的光谱可分离性,我们使用了一组具有不同类别可分离性和PSF的合成多光谱图像。实验。已经发现,与最新方法相比,所提出的LCCD方法(即具有FSRM的HNN)可以从噪声中分离出更多真实的变化,并产生更准确的LCCD结果。当类别可分离性较小且PSF的方差较大时,即频谱分解的不确定性较大时,该方法的优势更加明显。此外,FSRM的使用可以加快LCCD所需的基于HNN的处理。该提议方法的优势还通过应用于一组实际Landsat中分辨率成像光谱仪(MODIS)图像得到了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号