首页> 外文期刊>IEEE Geoscience and Remote Sensing Letters >A Novel Approach to Subpixel Land-Cover Change Detection Based on a Supervised Back-Propagation Neural Network for Remotely Sensed Images With Different Resolutions
【24h】

A Novel Approach to Subpixel Land-Cover Change Detection Based on a Supervised Back-Propagation Neural Network for Remotely Sensed Images With Different Resolutions

机译:基于监督反向传播神经网络的分辨率不同的亚像素土地覆盖变化检测新方法

获取原文
获取原文并翻译 | 示例

摘要

Extracting subpixel land-cover change detection (SLCCD) information is important when multitemporal remotely sensed images with different resolutions are available. The general steps are as follows. First, soft classification is applied to a low-resolution (LR) image to generate the proportion of each class. Second, the proportion differences are produced by the use of another high-resolution (HR) image and used as the input of subpixel mapping. Finally, a subpixel sharpened difference map can be generated. However, the prior HR land-cover map is only used to compare with the enhanced map of LR image for change detection, which leads to a nonideal SLCCD result. In this letter, we present a new approach based on a back-propagation neural network (BPNN) with a HR map (BPNN_HRM), in which a supervised model is introduced into SLCCD for the first time. The known information of the HR land-cover map is adequately employed to train the BPNN, whether it predates or postdates the LR image, so that a subpixel change detection map can be effectively generated. In order to evaluate the performance of the proposed algorithm, it was compared with four state-of-the-art methods. The experimental results confirm that the BPNN_HRM method outperforms the other traditional methods in providing a more detailed map for change detection.
机译:当可获得具有不同分辨率的多时间遥感图像时,提取亚像素土地覆被变化检测(SLCCD)信息非常重要。常规步骤如下。首先,将软分类应用于低分辨率(LR)图像以生成每个类别的比例。其次,比例差异是通过使用另一个高分辨率(HR)图像产生的,并用作子像素映射的输入。最后,可以生成子像素锐化的差异图。然而,现有的HR土地覆盖图仅用于与LR图像的增强图进行比较以进行变化检测,这导致了非理想的SLCCD结果。在这封信中,我们提出了一种基于带有HR图(BPNN_HRM)的反向传播神经网络(BPNN)的新方法,其中,有监督的模型是首次引入SLCCD。无论是在LR图像之前还是之后,都可以充分利用HR土地覆盖图的已知信息来训练BPNN,从而可以有效地生成子像素变化检测图。为了评估所提出算法的性能,将其与四种最新方法进行了比较。实验结果证实,BPNN_HRM方法在提供更详细的变化检测图方面优于其他传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号