首页> 外文OA文献 >Thermodynamic and physiological study of caproate and 1,3-propanediol co-production through glycerol fermentation and fatty acids chain elongation
【2h】

Thermodynamic and physiological study of caproate and 1,3-propanediol co-production through glycerol fermentation and fatty acids chain elongation

机译:甘油发酵和脂肪酸链延长联产己酸和1,3-丙二醇的热力学和生理研究

摘要

An alternative process for anaerobic wastewater treatment with methane recovery is to elongate the carbon chain of volatile fatty acids (VFAs) with a formation of medium chain carboxylic acids (MCCAs), e.g. n-caproic acid with higher monetary value. A potential electron donor is glycerol as a surplus byproduct from the rapid growth of waste-derived biodiesel industry. In the current approach, an industrial chemical, 1,3-propanediol (1,3-PDO) is produced from crude glycerol along with a formation of other soluble byproducts including ethanol and volatile fatty acids (VFAs), which necessitates a significant amount of energy input for separation and purification. To circumvent the energy sink requirement and upcycle both the wastewater treatment process and the biodiesel industry, it is highly beneficial to produce a valuable secondary product from the byproducts. This pioneer study reports on thermodynamic and physiological insights gained into the co-production of 1,3-PDO and caproate from glycerol. Thermodynamics analysis demonstrated that a higher pH range is more favorable when either glycerol or ethanol acting as an electron donor, whereas a high partial pressure (27% at 1 atm) and a low pH (≤5.5) are advantageous for caproate formation with hydrogen. With the glycerol-to-acetate molar ratio of 4 and pH of 7, the physiological experiments achieved a co-production of 1,3-PDO and caproate. However, the caproate yield was low and found to be kinetic-limited. Caproate formation was significantly increased by the intermediate ethanol addition with the optimal mono-caproate formation obtained at the ethanol-to-acetate molar ratio of 3. A synergistic relationship was evinced through microbial characterization, resulting in Clostridium kluyveri and some bacteria with function of converting glycerol to VFAs. This study demonstrates that sufficient ethanol produced as an intermediate is capable of enhancing caproate formation in a synergistic pathway along with 1,3-PDO. The knowledge gleaned paves new avenues for the biodiesel industry by upcycling the byproduct crude glycerol into 1,3-PDO and caproate.
机译:具有甲烷回收的厌氧废水处理的另一种方法是延长挥发性脂肪酸(VFA)的碳链,形成中链羧酸(MCCA),例如具有较高货币价值的正己酸。潜在的电子供体是甘油,它是废物衍生生物柴油行业快速发展的多余副产品。在目前的方法中,由粗制甘油生产工业化学品1,3-丙二醇(1,3-PDO)以及形成其他可溶性副产物,包括乙醇和挥发性脂肪酸(VFA),这需要大量的用于分离和纯化的能量输入。为了规避能源消耗的需求并在废水处理过程和生物柴油行业中实现升级,从副产品生产出有价值的副产品非常有益。这项先驱性研究报告了从甘油联合生产1,3-PDO和己酸的热力学和生理学见解。热力学分析表明,当甘油或乙醇用作电子给体时,较高的pH范围更有利,而较高的分压(在1atm时为27%)和较低的pH(≤5.5)有利于与氢形成己酸酯。在甘油与乙酸酯的摩尔比为4且pH为7的情况下,生理学实验实现了1,3-PDO和己酸酯的联合生产。但是,己酸酯的收率低并且发现是动力学受限的。中间添加乙醇后,己酸酯的形成显着增加,在乙醇与乙酸的摩尔比为3时获得最佳的单己酸酯形成。通过微生物表征证明存在协同关系,导致克鲁维氏梭菌和一些具有转化功能的细菌甘油转化为VFA。这项研究表明,作为中间体生产的足够乙醇能够与1,3-PDO一起在协同途径中增强己酸酯的形成。通过将副产物粗甘油升级为1,3-PDO和己酸己酯,所收集的知识为生物柴油行业开辟了新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号