首页> 外文OA文献 >Bi-objective optimization of three echelon supply chain involving truck selection and loading using NSGA-II with heuristics algorithm
【2h】

Bi-objective optimization of three echelon supply chain involving truck selection and loading using NSGA-II with heuristics algorithm

机译:使用启发式算法的NSGA-II对涉及卡车选择和装载的三级供应链进行双目标优化

摘要

This paper models a three echelon supply chain distribution problem considering multiple time periods, multi-products and uncertain demands. To take the problem closer to reality we consider multiple truck types and focus on the truck selection and loading sub-problem. Truck selection is important because the quantity of goods to be transported varies regularly and also because different trucks have different hiring cost, mileage and speed. Truck loading is important when considering the optimal loading pattern of products having different shapes and sizes on trucks, which themselves have distinct loading capacities. The two objectives considered here are the cost and responsiveness of the supply chain. The distribution problem is solved using the non-dominated sorting genetic algorithm (NSGA-II). However, the genetic algorithms compromise the optimality of the sub-problems while optimizing the entire system. But the optimality of truck selection and loading sub-problem is non-compromisable in nature. Hence a heuristic algorithm is used innovatively along with the NSGA-II to produce much better solutions. To make our model more realistic, the distribution chain is modelled as a push-pull based supply chain having multiple time periods and using demand aggregation over time. Using a separate algorithm also gives the advantage of utilizing the difference in nature of the push and pull part of the supply chain by giving every individual truck different objectives. Real life like data is generated and the optimality gap between the heuristic and non-heuristic approach is calculated. A clear improvement in objectives can be seen while using the heuristic approach.
机译:本文考虑了多个时间段,多种产品和不确定的需求,为三级供应链分销问题建模。为了使问题更接近实际,我们考虑了多种卡车类型,并着重于卡车的选择和装载子问题。选择卡车很重要,因为要运输的货物数量定期变化,并且因为不同的卡车具有不同的租赁成本,里程和速度。当考虑具有不同装载能力的卡车上具有不同形状和尺寸的产品的最佳装载模式时,卡车装载很重要。这里考虑的两个目标是供应链的成本和响应能力。使用非支配排序遗传算法(NSGA-II)解决了分配问题。但是,遗传算法会在优化整个系统的同时损害子问题的最优性。但是,卡车选择和装载子问题的最优性在本质上是不容置疑的。因此,启发式算法与NSGA-II一起被创新使用,以产生更好的解决方案。为了使我们的模型更实际,分配链被建模为基于推挽式的供应链,该链具有多个时间段,并随时间使用需求汇总。使用单独的算法还具有通过为每辆卡车赋予不同的目标来利用供应链的推拉部分性质差异的优势。生成像数据这样的现实生活,并计算启发式和非启发式方法之间的最优差距。使用启发式方法可以看到目标的明显改善。

著录项

  • 作者

    Chan FTS; Jha A; Tiwari MK;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号