首页> 外文OA文献 >Improving performance of similarity-based clustering by feature weight learning
【2h】

Improving performance of similarity-based clustering by feature weight learning

机译:通过特征权重学习提高基于相似度的聚类性能

摘要

Similarity-based clustering is a simple but powerful technique which usually results in a clustering graph for a partitioning of threshold values in the unit interval. The guiding principle of similarity-based clustering is "similar objects are grouped in the same cluster." To judge whether two objects are similar, a similarity measure must be given in advance. The similarity measure presented in this paper is determined in terms of the weighted distance between the features of the objects. Thus, the clustering graph and its performance (which is described by several evaluation indices defined in this paper) will depend on the feature weights. This paper shows that, by using gradient descent technique to learn the feature weights, the clustering performance can be significantly improved. It is also shown that our method helps to reduce the uncertainty (fuzziness and nonspecificity) of the similarity matrix. This enhances the quality of the similarity-based decision making.
机译:基于相似度的聚类是一种简单但功能强大的技术,通常会生成一个聚类图,用于在单位间隔中对阈值进行分区。基于相似性的聚类的指导原则是“将相似的对象分组在同一聚类中”。为了判断两个对象是否相似,必须提前给出相似性度量。本文提出的相似性度量是根据对象特征之间的加权距离确定的。因此,聚类图及其性能(由本文定义的几个评估指标来描述)将取决于特征权重。本文表明,通过使用梯度下降技术学习特征权重,可以显着提高聚类性能。还表明,我们的方法有助于减少相似度矩阵的不确定性(模糊性和非特异性)。这提高了基于相似度的决策的质量。

著录项

  • 作者

    Yeung DS; Wang XZ;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号